The Historic Cobalt Mining Camp: Evaluating Rehabilitation Options in a Hydro-Geochemically Challenged Environment

Chris Kennedy, Josée Noël, Jean Cayouette – Agnico Eagle Mines Ken Korman, Anthony Story, Maria Story – Story Environmental

November 30, 2017

Presentation Overview:

- General background geology, mine design, ore processing
 - see Charles Dumaresq talk for camp history
- Agnico Eagle and the Cobalt Camp
- Geochemical characterization how is it leaching?
- Hydrogeology challenges how is it being transported?
- Next steps

Geological Setting

- Green = Archean metasediment & metavolcanics
- Brown = metasedimentary (mainly conglomerate)
- Purple = diabase sill and mineralization is generally within 200m of intrusion

Agnico Eagle | Cobalt - BC MEND 2017

Mineralogy

• Ore minerals

- Native silver, gold, bismuth and arsenic
- \circ Arsenides, sulpharsenides, sulphides
- Calcite, dolomite, quartz, and chlorite (gangue)
- Weathering minerals
 - Erythrite, or 'cobalt bloom' ($Co_3(AsO_4)_2 \cdot 8H_2O$)
 - \circ Annabergite (Ni₃(AsO₄)₂•8H₂O)
- Unique to the camp is a relative lack of iron minerals – poor capacity to retain arsenic at neutral pH
- No ARD excess of carbonates, low sulphur

Mine Design

- Just like tailings management, in the early days there was none!
- Exploration was typically by hiring men from the pub and trenching – which was very similar to mining method
- Not unheard of to have up to 10 shafts on a property
- Stories of throwing a toque at a rock wall if it stuck, mining went that way (silver 'horns')
- Shafts and workings often joined
- Drill holes often intersected other workings and in some cases tailings!
- More later on interconnections....

Ore Processing

- Processing of the ore consisted mainly of grinding, gravity concentration and cyanidation in the earlier years
- Flotation in later years, with mercury and pyrometallurgy used to recover silver from the highest grade ores
- Relatively crude processing methods resulted in re-working tailings in later years – but also tailings with high metal content
- Waste rock was effectively ore that did not pass the toque test!

Agnico Eagle in Cobalt

Agnico Eagle at Cobalt – Road Map to Present Day

- 1957 to 1989 operations (not present in the first boom)
 25 mines and 4 mills, but over 200 properties due to opportunistic purchases for the return of the silver price
- 1992 to 2005 post closure works and monitoring
- 2006 sold properties, but they were returned in 2010
- In 2012 the MNDM requested an amendment to closure plans due to unfinished reclamation efforts – which resulted in new geochemical and hydrogeology studies

Agnico Eagle at Cobalt – Road Map to Present Day

Ag + Ni + Co = Agnico

Agnico Eagle | Cobalt – BC MEND 2017

Agnico Eagle at Cobalt – Present Day

11

Technical Studies: Geochemistry

Technical Studies – Geochemistry

- Waste rock and tailings geochemical characterization studies to confirm or revise leaching basis
 - Focus is on arsenic, but other elements also included such as cobalt, nickel, etc
- General program
 - Geological setting and mineralogy review
 - Field tour with MNDM regional geologist Gary Gabrowski*
 - Review of previous work (e.g. Dumaresq 1993, MOE 2011)
 - Field sampling
 - Laboratory testing
 - Geochemical conceptual model development

Technical Studies – Geochemistry

- Laboratory testing program included
 - Composition aqua regia & ICP-MS
 - Acid-base accounting
 - o Mineralogy
 - Water soluble leaching tests (i.e. SFEs)
- Material has been weathering for over 100 years in some cases – no real need for laboratory weathering tests

Geochemistry: Composition

- Arsenic 10X basalt = 20 mg/kg
- Tailings up to 10,000 mg/kg

Geochemistry: Waste Rock and Tailings Mineralogy

Mineral Solubility – As Leaching

Agnico Eagle | Cobalt – BC MEND 2017

Geochemistry: Challenges & Opportunities

Challenges

- long term reservoir creating soluble arsenic minerals
- low immobilization potential (low iron environment)
- Many sites and transport (hydro) see next slides
- Regulatory objectives and the geological setting

Opportunities

- solubility control (albeit high) and therefore water contact management as opposed to oxidation inhibition
- Some sequestration noted
- Metal leaching (Co, Ni) is relatively low due to alkaline conditions (as compared to ARD scenario)

Technical Studies: Hydrogeology

Hydrogeology Studies

- Some of the work completed to understand water movement
 - Monitoring wells in tailings and bedrock
 - Water level monitoring in shafts, raises, adits, open cuts, lakes and ponds
 - Instrumentation included survey-grade GPS and level loggers at key locations for extended periods
 - Digitized historic maps of underground workings, in both plan and section view

Hydrogeology Studies

- Work completed to understand water movement (continued)
 Interviewed former miners and contractors who worked in the camp
 - Reviewed literature, including publications such as *Cobalt Mining Times Remembered* by William Sutton (2013 book by former miner)
 - Reviewed historical air photos of drained lakes
 - Conducted detailed bathymetric mapping of key surface water bodies (e.g., Cobalt Lake)

Hydrogeology

3D Video of underground workings

Hydrogeology

Plan view of workings (in lieu of animation)

Hydrogeology – Piping Connections

Hydrogeology – Bulkhead Design

Hydrogeology – Cobalt Lake Connectivity

Hydrogeology – Resulting Conceptual Model

Hydrogeology: Challenges and Opportunities

Challenges

- Multiple owners (not only Agnico Eagle) and transport of loadings through connected networks
- Mine hazards such as crown pillars and open stopes also are not only held by one owner
- Opportunities
 - Low permeability bedrock therefore inhibition of mine water into groundwater
 - Preferential transport of water through the workings

Rehabilitation Next Steps

Rehabilitation Next Steps

- A risk based action plan has been developed with MNDM for the area to consider:
 - Water quality
 - Physical hazards
 - Historical value
- Working groups are being established to help establish water quality objectives and historical value
- In the meantime:
 - Evaluate reclamation techniques on wholly owned sites
 - Cobalt market but caution needed with regards to closure obligations and the mandate of junior exploration companies

Acknowledgements and Thanks!

- SRK Consulting
 - o Kelly Sexsmith
 - Stephen Day
 - o Bronwen Forsyth
- Thanks for listening!