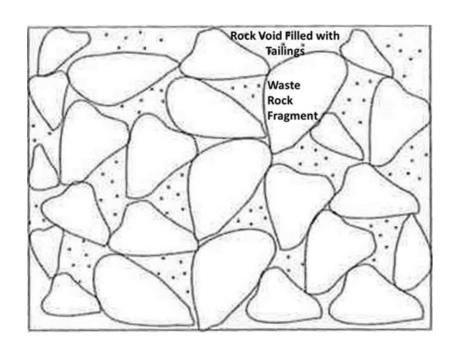


A UNIQUE RESEARCH PROGRAM

ASSESSMENT OF PASTE ROCK AS A COVER MATERIAL IN MINE RECLAMATION AT THE CANADIAN MALARTIC MINE

Bruno Bussière¹, Sandra Pouliot², Emma Charbonneau¹ and Ward G. Wilson³

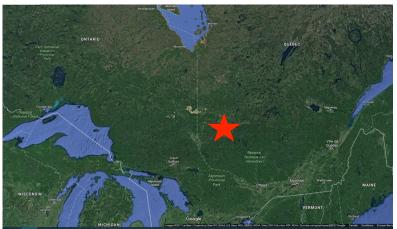

¹Research Institute on Mines and the Environment (RIME), UQAT

²Canadian Malartic Mine

³University of Alberta

WHAT IS A PASTE ROCK MIXTURE?

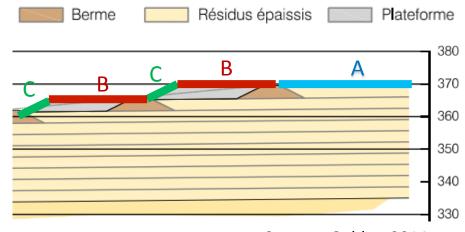
- What we call « paste rock » or « co-mixing » is in fact an homogeneous mixture of fine tailings and waste rock;
- Used in the past by coal mines and some oil sands operations;
- Work previously done by Wilson and Wickland (2008) as a way to co-dispose waste rock and tailings.


Could this material successfully be used as a reclamation cover?

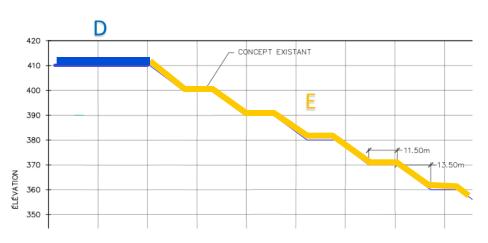
ABOUT THE CANADIAN MALARTIC MINE

- The Canadian Malartic Mine is one of Canada's biggest open pit gold mine.
 Owned by a partnership – 50% Agnico Eagle Mines and 50% Yamana Gold.
- Commercial production started in 2011 and is presently at a rate of 55 000 tpd.
- Canadian Malartic mine is currently conducting an assessment of various reclamation scenarios for both potentially acid generating (PAG) waste rocks and PAG tailings.

THE CANADIAN MALARTIC MINE


RECLAMATION DOMAINS (5)

TSF: 639 ha


- A. Flat areas Top of the tailings : 354 ha
- B. Flat areas berms: 234 ha
- C. Inclined areas Bench faces: 51 ha

WRF: 417 ha

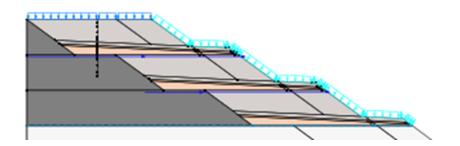
- D. Flat areas Top of the pile: 253 ha
- E. Inclinded areas Benches and terraces : 164 ha

Source: Golder, 2014

Source: WSP, 2016

RECLAMATION CHALLENGES

- √ Size
- ✓ Chemical (ARD) and geotechnical stability
- ✓ Cover material availability
- ✓ Constructability
- ✓ Progressive rehabilitation
- ✓ Community consultations

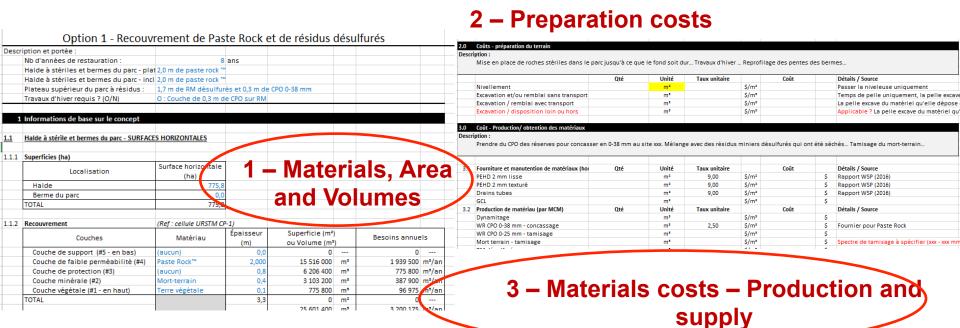

OUTLINE

- > RECLAMATION OPTIONS
- LABORATORY CHARACTERIZATION
- RECLAMATION CELLS FOR TAILINGS AND WASTE
 ROCK
- SUMMARY AND ON-GOING WORK

RECLAMATION OPTIONS

- Cover with capillary barrier effect (CCBE)
 - I. Desulfurized or amended tailings + Waste rock
 - II. Paste rock + waste rock
- 2. Bilayer cover
 - I. Desulfurized or amended tailings + Waste rock
 - II. Paste rock and waste rock
- 3. Monolayer Paste Rock
- 4. Geosynthetic cover
- Flow control layer (WRF only)

COMPARATIVE ANALYSIS OF POSSIBLE RECLAMATION SCENARIOS FOR CMM


- All closure methods → Go / No Go threshold criteria
- Analysis
 - Costs
 - Construction Feasability
 - Environmental Performance
 - Stakeholder consideration

			Original	inpittalli	e di la	walti lay	wenolay	pigio	yelhelic	No.		Original	inpli wa	Watere	multilay	wenous	pigio	synthetic	90 A
Category of criteria	Weight of category	Evaluation criteria									Т								
Cost		Capital cost (CAPIX)	48	60															
	,	Operational cost (OPEX)	36	45															
	,	Minimizes risk of future reinvestment	12	30	6	24	18	24	24	18		12	30	6	12	12	12	18	18
		Compatibility with mine production (slow down of production and/ or change in mine plan)	45	45	45	27	36	27	45	27		27	45	45	27	36	27	45	27
Weighted sub-total			42,3	54	15,3	15,3	16,2	15,3	20,7	13,5		11,7	22,5	15,3	11,7	14,4	11,7	18,9	13,5
Construction feasability		Allows progressive construction	45	36	9	27	27	27	36	27		45	36	9	27	27	27	45	27
		Technical and construction feasability (and potential impacts)	24	30	18	12	18	18	24	12		12	30	18	12	12	12	18	18
		Potential compatibility issues and interaction with other cover systems	24	30	18	30	24	30	30	30		24	30	18	30	24	24	30	30
	6	Meterial availability	36	60	60	36	48	48	48	48		36	60	60	36	48	48	48	48
		Applicability of the concept (which sector)	30	30	18	18	18	18	24	30		300	30	18	18	12	12	18	18
I		Constructibility of confuse visits in recomment																	

RECLAMATION COSTS EVALUATION

4 - Construction costs -

ription :						
Mise en place du sable par fines couches	Compaction du sal	ale				
mise en place de sable par mies essenes	compaction da sat					
	Qté	Unité	Taux unitaire		Coût	Détails / Source
Déposition des résidus miniers		m³	0,25	\$/m³		Déposé avec les infrastructures acti
Remblayage - par couches minces (<50 cm)	m³		\$/m³		pour WR, Paste Rock, Sable, MT mai
Remblayage - par couche moyenne (50-10	0 cm)	m³		\$/m³		pour WR et Paste Rock
Remblayage de masse		m³		\$/m³		Applicable ?
Compaction (rouleau compacteur)		m²		\$/m²		Faire des items compacté et non co
Pose PEHD 2mm lisse / texturé		m²		\$/m²		
CQ installation PEHD	1	LOT		\$/LOT		
Pose et installation drains tubes		m²		\$/m²		
Mise en place terre végétale (10 cm)		m²		\$/m²		
Ensemencement hydraulique		m²		\$/m²		
Plantation arbres		m²		\$/m²		

PASTE ROCK AS COVER MATERIALS

Hypothesis: paste rock mixture can be used as low permeability layer of a reclamation cover that can be used to reduce water infiltration and limit the diffusion of oxygen towards reactive materials.

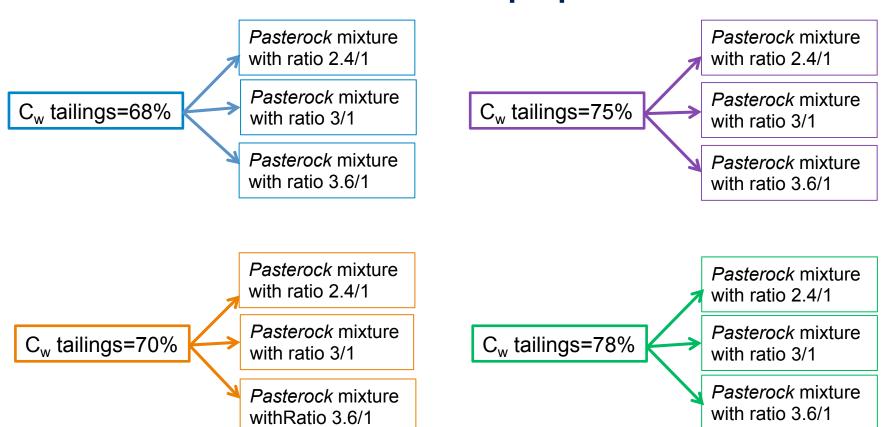
- Well designed paste rock posesses both similar mechanical properties as the waste rock and the hydrogeological properties of the tailings (Wilson, 2008);
- Previous field work (Wilson, 2008) demonstrated that infiltration rates and drainage are reduced when the mixture is used to construct a cover system on mine tailings;
- It promotes the use of mining waste in mine site reclamation instead of impacting additional areas to get natural materials.

OUTLINE

- RECLAMATION OPTIONS
- > LABORATORY CHARACTERIZATION
- FIELD TEST CELLS
- SUMMARY AND ON-GOING WORK

Physical Chemical Mineralogy Hydrogeological Grain size X Ray **ICP-AES** Saturated distribution Diffraction hydraulic (XRD) conductivity (K_{sat}) Carbon and Sulphur Relative analysis density (D_r) Water retention curve (WRC) Proctor tests

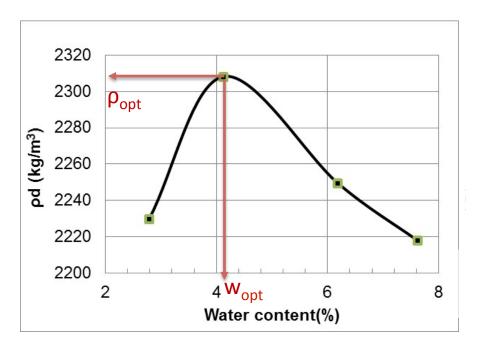
CHOICE OF RATIO AND IN-LAB PASTE ROCK MIXING


Several ratios tested (waste rock/ tailings): 2.4/1, 3/1, and 3.6/1

Several tailings solid % (C_w) tested: C_w tailings = 68%, 70%, 75%, 78%

Properties of different paste rock mixture

Paste rock mixture preparation



Properties of different paste rock mixtures

HYDROGEOTECHNICAL CHARACTERIZATION

- Variable head permeability tests
- Compaction tests

$$k_{sat} = \frac{L}{(t_2 - t_1)} \frac{a}{A} \ln \left(\frac{h_1}{h_2} \right)$$
section A
section A

Example of Proctor test results

Appearance of the Paste rock

Ratio 2.4/1 (waste rock/tailings): C_w tailings= 68%

Ratio 3/1 (waste rock/tailings): C_w tailings= 75%

Column dismantling

Ratio 3.6/1 (waste rock/tailings): C_w tailings= 70%

Results

Ratio (Waste rock/Tailings)	Tailings C _W (%)	k _{sat} (cm/s)	ρ _{dry3} (Kg/m)	W _{opt} (%)	n _{opt}	Slump (on 40cm)	Particles segregation	
2.4 / 1	1 68 3.4x10 ⁻⁵		2310	4.2	0.18	40 cm	High	
2.4 / 1	75	1.4x10 ⁻⁵	2290	7.2	0.18	/	zero	
2.4 / 1	78	5.8x10 ⁻⁶	2390	6.4	0.15	/	zero	
3/1	75	1.0x10 ⁻⁵	2315	7.4	0.17	/	zero	
3.6 / 1	70	1.9x10 ⁻⁵	2320	6.1	0.17	15 cm	zero	
3.6 / 1	75	9.3x10 ⁻⁶	2320	5.6	0.17	/	zero	

Best hydrogeological properties

Ratio 3/1 with tailings C_w of 75% is the paste rock ratio used for the construction of the reclamation cells

OUTLINE

- RECLAMATION OPTIONS
- LABORATORY CHARACTERIZATION
- > FIELD TEST CELLS
- SUMMARY AND ON-GOING WORK

Objective: To assess *in situ* the efficiency of the paste rock as cover material in regards to ARD control (as both water and oxygen barrier)

Cells configuration (see Slide 22)

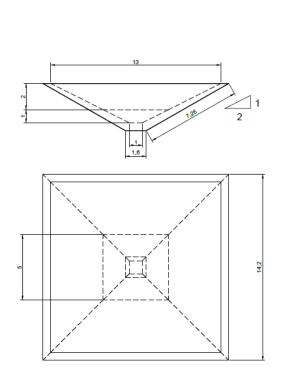
	Cell configuration	Materials volume (m³)
Monolayer cover of paste rock cell on tailings (CR-4)	2 m of non-amended paste rock	171
	1 m of CM tailings	7
Monolayer cover of paste rock cell on waste rock on	2 m of non-amended paste rock	285
horizontal surfaces (CS-4)	4 barrels filled with 1 m of each lithology 0-38mm	
Monolayer paste rock cell on waste rock on slope (CP-1)	2 m of non-amended paste rock	498

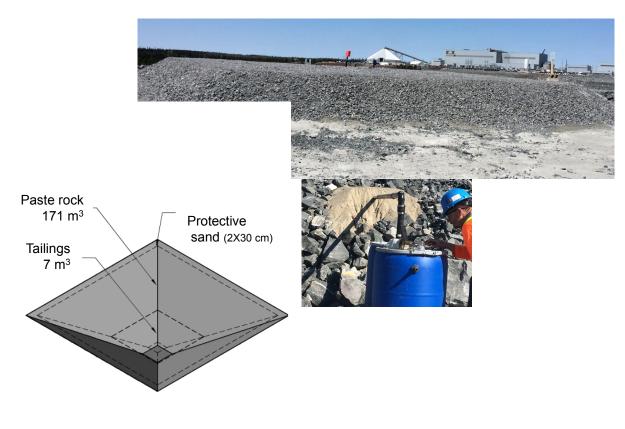
Paste rock preparation

Belt sieving the rough mix and spilling at a height of 2 m

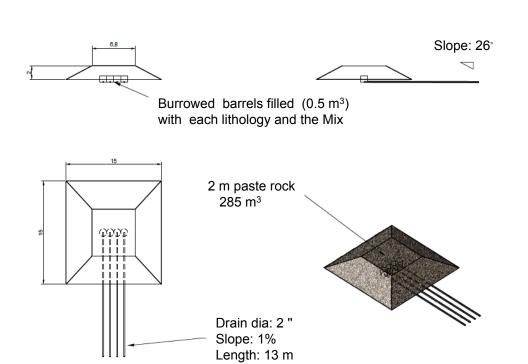
Paste rock at the belt sieve output

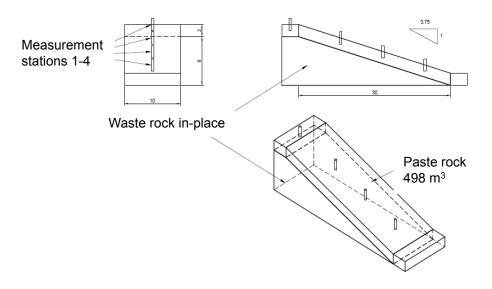
Forming of a ball to test the paste rock cohesion

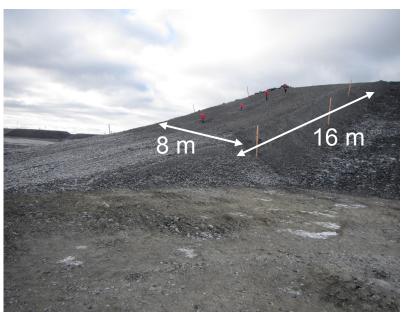

Carrying the paste rock to the storage area



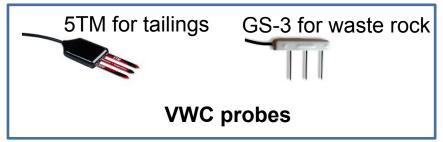
Final paste rock

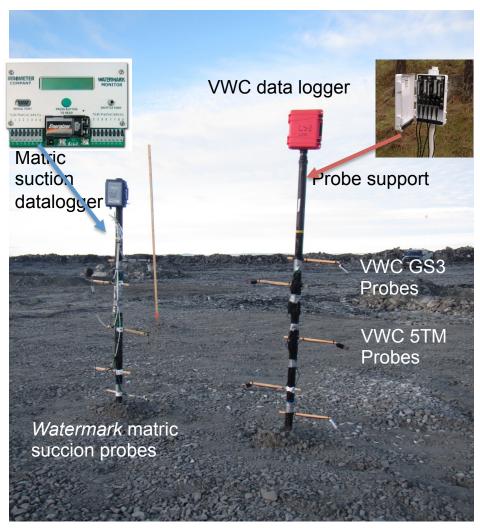

Cells configuration: Monolayer cover of paste rock on tailings


Cells configuration: Monolayer cover of *paste rock* on waste rock on horizontal surfaces

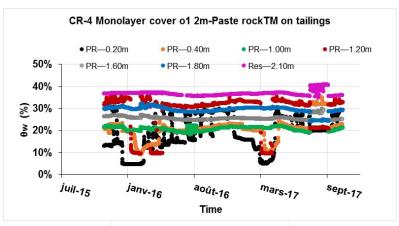


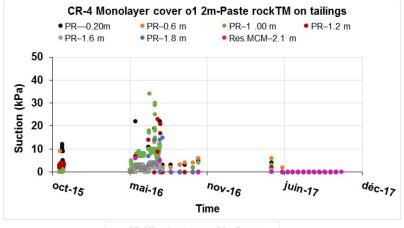
Cells configuration: Monolayer *paste rock* on sloping waste rock

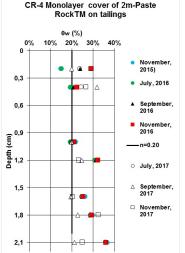


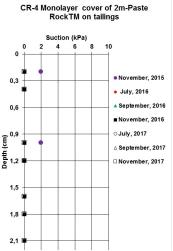


Cells instrumentation









Hydrogeological behavior monitoring (example of results)

Leachates water quality monitoring (examples of results)

Measured parameters	Control cell	Reclamation cell (example of Monolayer of 2m <i>-paste rock™)</i>
pH (–)	7–8	7–8
As (mg/L)	< 0.06 (DLM)	<dlm< th=""></dlm<>
Cu (mg/L)	<0.003 (DLM)	<dlm< th=""></dlm<>
Fe (mg/L)	<0.1	<0.1
Ni (mg/L)	0.04-0.05	0.04-0.05
Pb (mg/L)	<0.02 (DLM)	<0.02
Zn (mg/L)	0.006-0.05	0.006-0.05
SO ₄	≈2500	≈1500
Period	May 25- November 07, 2017	May 25-November 07, 2017
Area (m²)	25	179
Precipitations (m)	0.5	0.5
Precipitations (m³)	12	89
Discharged water (m³)	1.5	5
Infiltration(%)	13	6

WASTE ROCK SIZE VS CONSTRUCTABILITY

Objective: To evaluate the influence of waste rock particle size on the performance of paste rock as cover materials

- Three field pads (CPR-1, CPR-2 and CPR-3) made with paste rock were constructed over a horizontal portion (1D) of the waste rock disposal area.
- Three different paste rock recipes were preliminary prepared using different waste rock particle size.

Cell	Thickness	Dimensions	Slope	Ratio Waste rock/ tailings	Waste rock Grain size	Volume
CPR-1	1 m	5x5 m	1H:1V	3/1	0-50 mm	17 m³
CPR-2	1 m	10x10 m	1H:1V	1.3/1	0-100 mm	82 m³
CPR-3	1 m	10x10 m	1H:1V	1.3/1	50-100 mm	82m³

WASTE ROCK SIZE VS CONSTRUCTABILITY

Paste rock pad construction

Monolayer of 1m paste rock (ratio 3/1 - Cw 75%); using waste rock of 0-50mm

Monolayer of 1m paste rock (ratio 1.3/1 - Cw 75%); using waste rock of 0-100mm

Monolayer of 1m paste rock (ratio 1.3/1 - Cw 75%); using waste rock of 50-100mm

WASTE ROCK SIZE VS CONSTRUCTABILITY

Result: In-situ density and unit weight Results and in-situ porosity estimations

Cell	Layer	Dry density (Kg/m³)		Water con (%)	tent	Porosity (-)		
	0-0.25m	2162		7		0.21	0.21*	
CPR-1	0.25-0.50m	2174	2160*	6	7*	0.2		
0-50mm	0.50-0.75m	2196	2100	6	,	0.2		
	0.75-1m	2106		7		0.23		
	0-0.25m	2025		11.0		0.27		
CPR-2	0.25-0.50m	1938	1834*	11.0	10*	0.29	0.33*	
0-100mm	0.50-0.75m	1689	1034	9.0		0.39		
	0.75-1m	1682		10.0		0.39		
	0-0.25m	1951		10.5		0.29		
CPR-3	0.25-0.50m	2050	2017*	14.0	12*	0.25	0.27*	
50-100mm	0.50-0.75m	2080	2017	12.0	12	0.24	0.27	
	0.75-1m	1985		12.0		0.28		

- ☐ In-situ porosity > in pads CPR-2 et CPR-3 than that in pad CPR-1:
 - more tailings in the paste rock (ratio 1.33/1) than in pad 1 (3/1) to get a better mixture.
 - the porosity in pads 2 and 3 is controlled by the tailings porosity

OUTLINE

- RECLAMATION OPTIONS
- LABORATORY CHARACTERIZATION
- FIELD TEST CELLS
- > SUMMARY AND ON-GOING WORK

SUMMARY

- The option of using paste rock as cover material at the Canadian Malartic Mine is investigated through laboratory and field work.
- Preliminary results are encouraging (low k_{sat}, good water retention properties, in situ preparation feasible) but the ratio (waste rock/tailings) used is a critical parameter (both technically and economically).
- The work is performed in close collaboration between the mine, consulting firms and RIME (two master students are working on paste rock as cover material).

ON-GOING WORK

- Other hydrogeological characterization tests are in progress (permeability test after various freeze/thraw cycles, water retention curves).
- Geomechanical characterization is also planned using shear box tests.
- Columns tests are underway to evaluate the geochemical behavior of paste rock and amended paste rock (to mitigate potential ML/ARD)
- Large scale field test (1-2 ha) to be built summer 2018 at the mine site will be part of the program.

A UNIQUE PARTNERSHIP FOR PRACTICAL AND SUSTAINABLE SOLUTIONS

