

How Much Modelling is Too Much Modelling Red Chris Mine: A Case Study

25th Annual BC-MEND ML/ARD Workshop Soren Jensen (SRK), Eduardo Marquez (SRK), Stephen Day (SRK) and Raj Anand (Imperial Metals Corporation) November 28-29, 2018

Water and Load Balance Modelling

- Focus here is on water and load balance models used to evaluate water management at mine sites.
- Water and load balance models are the best tools we have for evaluating and managing environmental risks.
- Water and load balance models are used to answer questions such as:
 - Will discharge from site be required?
 - If so, how much water and when?
 - What is the likely quality of the discharge and is treatment required?

Water and Load Balance Modelling

- Current state of practice:
 - Models usually developed in the Software Goldsim[®].
 - Comprehensive characterization of inputs, including site-specific geochemical source terms, meteorology, hydrology, hydrogeology, waste rock and tailings deposition, location and performance of water management infrastructure, etc.
 - Often, stochastic variables are used to represent variability in climatic, hydrologic and chemical source terms.

Topic of Discussion

Does increased model complexity actually improve model accuracy?

Higher Complexity = Greater Accuracy ?

• Or is it possible that model complexity masks model uncertainty by portraying a false sense of accuracy?

Why it Matters

- A decision of some importance must be made:
 - For example, expansion of an open pit, closure of a heap leach or waste rock area, change in mining rate.
- Investments could be significant and so could be the risks.

Why it Matters

- Water and load balance models are used for forecasting and understanding consequences of the decision.
- Because of high stakes (cost and risks) decision makers want "defensible" (*i.e.* reliable, accurate) model results.
- As modellers, we (too) often comply:
 - Rely on model complexity to demonstrate "defensibility" and (may unintentionally) mask uncertainty.

Why it Matters

 A simpler approach to modelling can improve understanding of *real* model uncertainty and lead to better (or at least better informed) decision making.

Case Study: Red Chris Mine Site-Wide Water Balance and Water Quality Model

Red Chris Case Study Overview

• This case study illustrates the potential utility of a simpler model for understanding *real* model uncertainty.

Background – Red Chris SWWBWQ Model

- In 2016: Application to amend the *Mines Act* Permit and *Environmental Management Act* Permit to advance construction of the South Dam.
- A Site-Wide Water Balance and Water Quality Model (SWWBWQ model) was needed to:
 - Estimate future water quality of tailings pond water.
 - Requirements for discharge.
 - Evaluation of potential effects on downstream water quality.
 - Assessment of water quality mitigation measures.
 - etc.

Red Chris Mine

2016 and Future

Red Chris SWWBWQ Model

- Model inputs:
 - Meteorology and surface hydrology
 - Hydrogeology (with 3D Groundwater Modelling)
 - Geochemical source terms
 - Mine plan (tailings and waste rock production and deposition)
- Main sources of uncertainty:
 - Geochemical source terms and attenuation of constituents in the TIA.
 - Groundwater/surface water interactions.
- However, all inputs have uncertainties.

Example: Waste Rock Source Terms (Selenium)

- Based on geochemical testwork.
- Natural variability in weathering rates → uncertainty in predicted rates.
- Variability addressed through 50th and 95th percentiles.

The Typical Approach

- Goldsim[®] Model.
- Can be months of model development.
- Includes all quantifiable inputs.
- Can be difficult to review and challenge.
- Infer certain precision of results.

The Typical Approach

GoldSim Pro - Red_Chris_Model_REV024_SRJ.gsm

File Edit View Graphics Model Run Help

- 🗆 X

Alternative Approach: Simple Excel[®] model (<20 Rows)

Site Runoff	
Total Project Catchment	3200 ha
Average Annual Precipitation	578 mm
Total Annual Inflow to TIA (incl. groundwater) Estin and	8.3 Mm ³ /year
Tailings	
Daily Production	30,000 tonnes/day
Annual Production	11 Mtonnes/year
Best Estimate Source Term, Selenium	55 mg/tonne
Total Selenium Load Dissolved	602 kg/year
Waste Rock	
Ultimate Waste Rock Area	284 ha
Runoff Coefficient, Developed Area	0.6
Waste Rock Area Flow	1 Mm ³ /year
Waste Rock Source Term	0.3 mg/L
Selenium Loadings from Waste Rock	295 kg/year
Result	
Selenium Concentration, TIA, Steady State	0.1 mg/L
Selenium Concentration, TIA, Post Closure, Steady State	0.004 ma/L

Alternate Approach

- Simple Excel (or Goldsim) model.
- Few hours of model development.
- Same fundamental inputs.
- Easy to review, revise, discuss and challenge.
- No "precision illusion".

Typical vs. Simple Model

In Reality:

Conclusions

- Identical conclusions:
 - Both models show elevated selenium concentrations in the TIA during operational years followed by a sharp drop when milling of ore ceases.
 - Selenium treatment unlikely to be required post-closure.
- Seasonal variability unlikely to be important for TIA water quality.

Closing Remarks

So, how much modelling is too much modelling?

- Answer is project-specific.
- Consider working with simpler models when identifying, conceptualizing and reporting model uncertainty because:
 - Resolution of a simple model matches level of certainty (i.e. order-ofmagnitude).
 - Easy to review, revise, discuss, verify, challenge and report result.
 - Addition of complexity often does not change the outcome.
- Pay attention to field monitoring!