

Conceptual Overview of Mechanistic Scale-up in Waste Rock: Lessons Learned from Diavik and Potential for Application to Other Mine Sites

Richard Amos, David Wilson, Brenda Bailey, David Blowes, Dave Sego, Leslie Smith

Scale-up

- Laboratory Data
 - Humidity cell leach rates
 - Acid base accounting
 - Mineralogy
 - Particle Size

- Factors Affecting Leach Rates
 - pH
 - Moisture content
 - Particle size
 - Surface area
 - Temperature
 - Water-rock contact,
 - Oxygen concentration
 - Mineral content

General Scale-up Approach

- Derive leach rates from humidity cell experiments
- Apply scaling factors
 - pH, moisture content, fragment size, temperature, water-rock contact, oxygen concentration, surface area, and mineral content
- Apply thermodynamic model to account for solubility constraints

Scale-up Complexity

- Temporal variability
 - Mineral weathering rate
 - Geochemical processes
 - Temperature
 - Moisture
- Variability by element

DIAVIK WASTE ROCK PROJECT

UNIVERSITY OF

WATERLOO

Carletor

The Diavik Waste Rock Research Project

Humidity Cells and Static Tests

Active Zone Lysimeters

Test Piles

Diavik Waste Rock Characteristics

- Relatively homogeneous/ low sulphur
 - Granite with varying amounts of biotite schist
 - Type I: < 0.04 wt. % S</p>
 - Type II: 0.04 0.08 wt. % S
 - Type III: >0.08 wt. % S
- Aerobic
 - $O_2 = 21\%$ throughout the pile all the time
 - No reduction in oxidation rate due to lack of O₂
- Arid environment
 - mean annual precipitation 280 mm
 - 40% is rainfall
 - Water flow is primarily through fine-grained material
 - Limited macro-pore flow
- Permafrost
 - Field experiments freeze throughout in the winter

Carleton

UNIVERSITY OF

WATERLOO

Humidity Cells – Intrinsic Sulfide Oxidation Rate

- 36 Humidity Cells
 - Type I, II and III
 - Cold room, room temperature
 - Samples of each collected in 2004 and 2005

- Rate dependent on:
 - Sulfide content
 - Surface area
 - Temperature

Scale to AZLs – Back of the Envelope Method

- Start with average humidity cell rate for each element
 - mol (m² S)⁻¹ s⁻¹
- Multiply by surface area of AZL experiments
- Multiply by sulfide content of AZL experiments
- Correct for temperature
 - AZL release rate in mol s⁻¹ (i.e. mass per time)
- Calculate rate in mass per year 22 weeks of weathering

Particle Size

- Effects of particle size on scale-up
 - Reactive surface area
 - Based on geometric calculations, 98% of surface area is in <6.3 mm fraction
 - Fraction used in humidity cells
 - Water flow
 - Generally through fine material
 - Through coarse material in high flow periods

- The Diavik Research Project Approach
 - All oxidation occurs in <6.3 mm fraction
 - Water flow through fine fraction
 - 100% flushing of fine fraction
 - Humidity cells use blasted rock

Scale Surface Area to Field Scale:

AZL Surface Area = Humidity Cell Surface Area * Fraction of fines (<6.3mm) in AZLs

Humidity Cells – Reactive Transport Model

- Geochemical understanding
- Quantification of;
 - Sulfide weathering
 - Buffering reactions
 - Temperature dependence
 - Changes in rates over time

Scale to AZLs – Reactive Transport Model

- Apply humidity cell simulations
 - Apply surface area and measured mineral content data
 - Compensate for temperature
 - Thermodynamic constraints on mineral solubility
 - No recalibration
- Apply estimate of field hydrology precipitation and snow-melt
- Account for freeze/thaw dynamics
- Assumptions/Simplifications:
 - No oxidation in winter
 - No solubility controls
 - No oxygen depletion
 - All leachate flushed in year it is produced
 - Leach rate of all elements are a function of sulfide content

Wilson et al, 2018. Appl. Geochem.

Carleton

WATERLOO

UNIVERSITY OF

Characterization and Parameters

- Humidity Cells
 - Leach rates
 - Mineralogical characterization
 - C and S
 - Sulfides
 - Buffering minerals
 - Physical characteristics
 - Particle size
 - Surface area
 - Temperature dependence

- Field Scale
 - Mineralogical characterization
 - C and S
 - Sulfides
 - Buffering minerals
 - Physical characteristics
 - Particle size
 - Surface area
 - Porosity
 - Hydraulic Conductivity

Carleton

- Hydrology
 - Infiltration estimate

Additional Complexity

- O₂
 - Atmospheric at Diavik throughout pile
 - Coupling of transport processes and temperature
 - Can be incorporated into modelling if transport rates can be estimated
- Non-matrix flow
 - Dry conditions at Diavik minimize macro-pore flow
 - Batter flow
 - Can be estimated based on site hydrology but modeling more challenging
- Heterogeneity
 - Diavik relatively homogeneous
 - Simulations have been done to consider heterogeneity at field scale
 - Provide range of uncertainty associated with predictions
- Limited a priori information
 - E.g. Hydrology infiltration estimates are good approximation
 - E.g. Particle size/surface area analogous case studies/professional knowledge, refine models over time

Moving Forward

- Application of Diavik methodology and modelling to other sites
- Short Course:

Scaling predictions of mine waste geochemistry with reactive transport modelling.

GAC-MAC-IAH Conference | Quebec City, May 2019

Thank you!

Questions

