

Mine Tailings Water Treatment

September 11st, 2018

Wayne Ingham, Ph.D.

BluMetric Environmental Inc.

Overview

TUNDRA MINE CHALLENGE

Logistics and Schedule

DESIGN REQUIREMENTS

- Logistical Constraints
- Treatment Requirements
- Construction Requirements
- Analytical Requirements

Tundra Mine Tailings Water Treatment

Tundra Mine Tailings Water Treatment

Tundra Mine Challenge

- Very short timeframe
- Remote location
- No roads
- High quality of treatment required
- Large volume to be treated
- Need to train for staffing
- Must disassemble and remove

2009 Pilot - Timeframe

- Bid in mid-May
- Award on June 15th
- Equipment to Yellowknife on July 6th
- Onsite by July12th
- Construction complete and ready to discharge July 19th
- First discharge on July 29th
- Reached design volume of 120,000 m³ Sept 7th
- Ceased treating Sept 24th at 180,000 m³

Traditional Set-up

Transport Constraints

The Design Needs

- Air access
- Small components
- Rapid delivery
- Ease of construction
- Building block design
- Treat 24/7
- Direct discharge

Variables

- Flow Volumes
- Concentrations
- New Contaminants of Concern
- Extremely High TSS
 - Low tailings pond
 - Weather

Configurable Treatment Trains

- Flexibility in treatment train configuration
- Series for double pass and pH manipulation
- Parallel when appropriate and able to achieve higher flows

Chemical Treatment Process

- Precipitating arsenic from solution
- Chemical reaction with ferric sulphate (ferric) and lime
- Minimum ratio of iron to arsenic (by weight) of 5:1
- Arsenic, zinc and other heavy metals are precipitated as metal hydroxide and adsorb to create flocs.
- Polishing treatment of zinc and lead
- Degraded influent quality
- Injection of a SMB to precipitate metal sulphides
- Solids separated by dewatering using Geotubes®
- Discharge to the environment

Plant Design and Layout

Treatment Quality

ARSENIC LEVELS

- Influent levels around 3 ppm
- Required a maximum of .5 ppm
- Finite chemicals on site
- Positive capture of the contaminant
- Require immediate and direct discharge

Discharge & Contract Criteria

Parameter		Effluent Criteria		
	Unit	Contract Specifications: Maximum Daily Average Concentration	Water License Criteria: Monthly Average Concentration	Water Licence Criteria: Maximum Concentration of Any Grab Sample
Metals				
Total arsenic	mg/L	0.20	0.50	1.00
Total copper	mg/L	0.01	0.01	0.02
Total lead	mg/L	0.01	0.01	0.02
Total nickel	mg/L	0.05	0.05	0.10
Total zinc	mg/L	0.02	0.02	0.04
Anions				
Nitrate (as N)	mg/L	5.00	5.00	10.0
Nitrite (as N)	mg/L	0.40	0.40	0.80
Conventional Parameters				
Total ammonia nitrogen	mg/L	5.00	5.00	10.0
Total suspended solids	mg/L	15.0	15.0	30.0
рН	-	6 - 9	6-9	6 - 9

Structural Components

Assembled Plant

Solids

- Hyroxide precipitation design to trap arsenic in a metal flock
- Must capture the flock for treatment to be effective
- Had to do that in positive and immediate way
- Must be able to handle new design flows of 150 m³/hr from 60 m³/hr
- Had to operate 24/7 with minimum attention

Inflated Geotube

Onsite Laboratory

- AA allowing for low level zinc and arsenic detection
- Allowed much greater control of the treatment process and real time adaptation to changes to influent chemistry

Ensured plant maintained discharge compliance at all

times

Onsite Laboratory

Results

Results

Results

Final Benefits

- 180,000 m³ of tailings water treated to an average of .08 ppm arsenic
- Over 58 days w/ average operation time 23 hr/d
- Average solids in discharge of 5 ppm
- Water levels reduced by 0.4 meters below requirement
- Lower pond final level 7.65
- Local community members trained as operators
- Over 80% of project was aboriginal labour
- Completed on time spec and on budget

Treatment Progress

- 2009 Dual Train Pilot: 180,000 m³
- 2010 Dual Train: 250,000 m³
- 2011 Triple Train: 300,000 m³
- 2012 Dual Train (Not onsite): 350,000 m³
- 2013-2016 Dual Train: 100,000 m³ 200,000 m³
- 2017 Dual Train (New): 60,000 m³
- 2018 (No Treatment Required)
- Total: ~1.8 million m³

Overview

Site Closure

Long Term Monitoring

Remote Monitoring

