Forecasting Long-Term Water Quality After Closure: Boliden Aitik Cu mine

McKeown, M., Christensen, D., Mueller, S., Weber, P., and O'Kane, M.

2018 Northern Latitudes Mining Reclamation Workshop Whitehorse and Carcross, Yukon September 11th, 2018

Aitik Boliden – Presentation Overview

The main objectives of the WRSF program were to understand the long-term water quality of WRSF seepage for the purpose of determining environmental risk at closure.

- Develop a flow model for the WRSF area
- Determine PAF (potentially acid forming)
 WRSF basal seepage component current water quality and flow rate
- Characterize the geochemistry of the PAF WRSF
- Derive other inputs for understanding long-term water quality
- Determine net percolation and oxygen flux into WRSFs
- Develop a long-term water quality model for the WRSFs

Köppen–Geiger climate classification system

Integrated Mine Waste Management and Closure Services Specialists in Geochemistry and Unsaturated Zone Hydrology

CONCEPTUAL SITE FLOW MODEL

Water Quality Monitoring Location

- Majority of surface and shallow groundwater flow reports to T2-T4 П collection channel which is monitored at location 558.
- Flow rate measurements and water quality data are available П

Integrated Mine Waste Management and Closure Services Specialists in Geochemistry and Unsaturated Zone Hydrology

Consultants

Monitoring Location 558 Flow Regime

 Infiltration and percolation through PAF
 WRSFs (T2, T3, T4) produces poor water quality

Percolation through Environmental WRSFs (T1, T7) produces acceptable water quality

 TMF contributes a substantial flow volume

Near surface natural ground flow contributes clean water

Water Model Characteristics

- Estimation of WRSF basal seepage flow rates based on net percolation

 330 mm/yr
 (~55% of average annual precipitation) calculated based on bare waste rock conditions)
- WRSF flow rates based on annual net percolation x footprint area

PAF WRSFs ~38 L/s

- Flow occurs as basal seepage that reports to the surficial aquifer in underlying moraine layer
- <u>Need to determine this</u> <u>Water Quality</u>

Env. WRSFs ~10 L/s

- Flow occurs as basal seepage that reports to the surficial aquifer in underlying moraine layer
- Water quality based on weighted mean from T6, representative of T1 and T7
 - pH ~ 6.9
 - Acidity ~0.2 mg/L
 - Cu ~ 0.007 mg/L
 - AI ~ 0.01 mg/L

TMF Flow and Water Quality

- TMF contributes substantial flow to collection channel
- Estimated contribution ranges from 43 to 90% of flow in T2-T4 channel from previous research studies at site

□ ~157 L/s

(70% of flow in T2-T4 channel) based on Dupuit analysis of anticipated phreatic surface in TMF and head gradient of flow path through PAF WRSF

 Water quality from samples (mean of two representative data sources)

- pH ~ 4.9
- Acidity ~ 79 mg/L
- Cu ~ 2.7 mg/L
- AI ~ 12 mg/L

FIELD BASED INVESTIGATIONS

Estimated PAF WRSF Mineralogy

Mineral	Key mineralogy used for PAF WRSF modelling(wt%)
Anorthite	6.0
Calcite	0.43
Pyrite	0.65
Chalcopyrite	0.12
Jarosite	0.41
Melanterite	0.02

Long term silicate neutralization source. Key mineral for neutralizing acidity in the long term from pyrite oxidation and jarosite dissolution

Rapid carbonate neutralization source

Potential acidity/metals, managed by limiting oxygen flux

Stored sparingly soluble acidity, kinetically controlled dissolution

Stored soluble acidity, reports as a function of net percolation

Derivation of Current PAF WRSF Source Term

GEOCHEMICAL MODELLING

Determination of PAF WRSF WQ

Determination of PAF WRSF WQ

Summary of Key Parameters

Component	Concentration (mg/L)
рН	3.5
Acidity	1,490
(as CaCO ₃)	
HCO ₃ -	1.2
NH ₄ +	0.37
NO ₃ -	19.3
NO ₂ -	0.01
Cu ²⁺	69
Zn ²⁺	9.5
Ni ²⁺	0.79
Na⁺	91
K+	59
Ca ²⁺	729
Mg ²⁺	192
Sr ²⁺	3.3
Al ³⁺	222
Fe ³⁺	14
Mn ²⁺	40
SO42-	3,830

1,490 mg/L Acidity x 37.5 L/s ~ 56,000 mg/s or ~1,760 tonnes acidity/year

PAF WRSF contributes dominant source of acidity to water monitoring location 558 (being ~2,000 tonnes/year).

Reducing the load from the PAF WRSF will significantly reduce overall catchment load.

EVALUATION OF POST CLOSURE WATER QUALITY

Cover System Design Objectives

- The WRSF cover system design objective is to integrate at source control of oxygen and water with the other elements of the closure plan such that the system as a whole meets recipient water quality criteria. This is achieved through:
 - Primarily a focus on managing oxygen ingress to very low levels to limit development of further stored acidity,
 - Understanding net percolation rates to inform on transport of stored acidity,
 - Utilizing site-specific climate conditions, and
 - **Incorporating** locally available borrow materials.

Site Specific Inputs - Summary

- Field investigation programs continued the previous cover design philosophy and focused on improving key areas
- Addition of highly compacted till layer enhanced its water retention characteristics and increased degree of saturation within the cover system leading to improved oxygen ingress management

- Compaction trials determined achievable field k_{sat} and density using locally available materials
- Results of compaction trial study used to determine optimal compaction methodology
- Improved cover system alternatives built into cover system field trials to monitor in situ cover system performance over time

WRSF Cover System Program

- Predicted oxygen ingress by diffusion and dissolved oxygen in percolation reduced to a very low value
- Degree of saturation
 >85% is maintained during the simulation period in HCT layer
- Oxygen moving through the cover system was consumed in the upper 5 m of PAF profile

Predicted Average Monthly Degree of Saturation (Averaged all measurements by month 2015 to 2200)

Evaluation of Long-Term Water Quality

Model Year after Closure

Evaluation of Long-Term Water Quality

Model Year after Closure Cover System Construction

This study and presentation was part of the Aitik mine closure planning study driven by New Boliden AB. Acknowledgments to:

• Seth Mueller / Nils Eriksson

- Ted Eary
- Alan Martin / Colin Fraser

Thank You!

Î

Habitat for Humanity[®] O'Kane Consultants Inc. Habitat for Humanity Initiative – El Salvador

