

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

# Impact of climate change on mine waste management by water and saturated covers

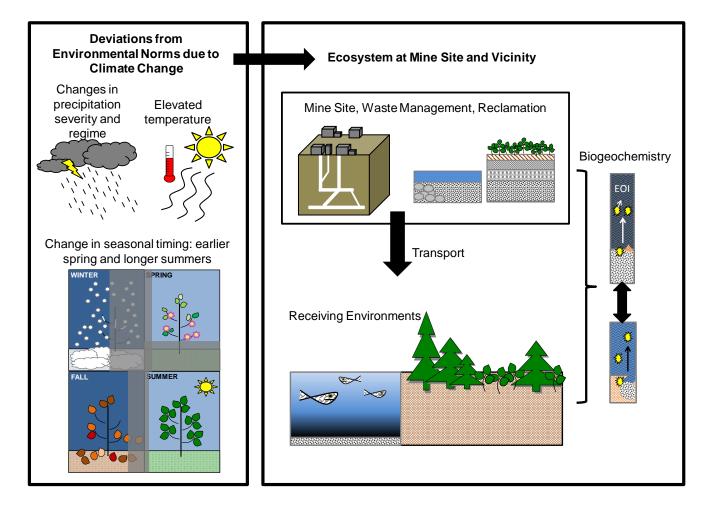
Nicolas Reynier

2018 Northern Latitudes Mining Reclamation Workshop
Whitehorse and Carcross, Yukon
September 10-13, 2018





# 1. What are the current thoughts in the mining community regarding climate change?


# Climate change and metal mines

Climate Related Factors Relevant to Mines (IPCC 2014, CEAA 2003, ICMM 2013)

- Warming trend
- Permafrost thaw
- Extreme temperature
- Increased precipitation
- Disruptions to operation
- Extreme weather events
- Drying and dust emissions
- Impact to building infrastructures



## Relationship between climate change / mine sites





© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016

# What happens when mine site/waste and receiving environments interact with climate change?

- Release of metals during rainfall (evaporitic salts dissolution)
  - Spring Creek California, Contrary Creek Virginia, Red River New Mexico, Iberian pyrite belt SW Spain
- Metals dilution and pH raises (high water volumes from rain)
  - Spring Creek California, Red River New Mexico, Rum Jungle Australia, Stockton coal mine New Zealand
- Waste exposed to oxygen (drying and lowered water table)
  - Snake River Colorado, Iberian pyrite belt Spain
- Change of baseline concentrations (permafrost thaw)
  - Snake River Colorado



## 2. Saturated Covers





# Knowledge gaps – Saturated covers

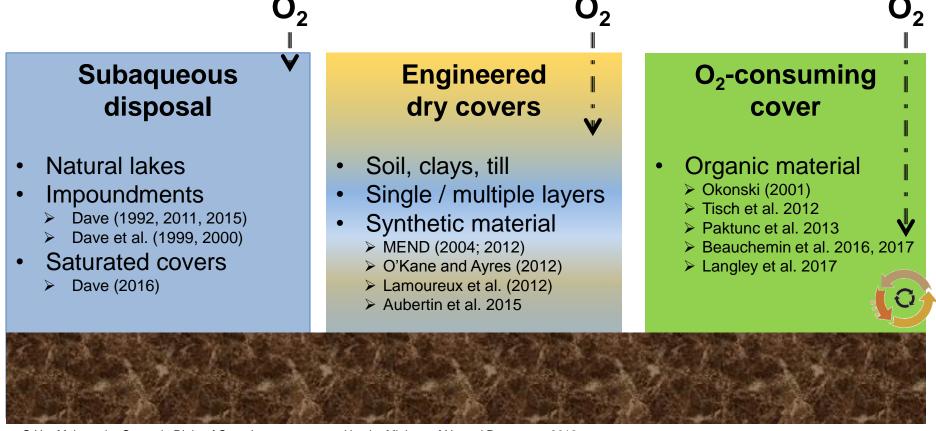


The mining industry already proposing saturated covers as water cover alternatives at sites where water covers are not feasible

- Elliot lake, ON
- Snip Lake, BC
- Val d'Or, QC

- Long term performance to minimize AMD metal mobilization, longterm recovery of ecosystem
- Adaptation of water covers for northern conditions of limited precipitation and cold winter months
- Fluctuation of water cover heights due to climate change-mediated changes in precipitation patterns

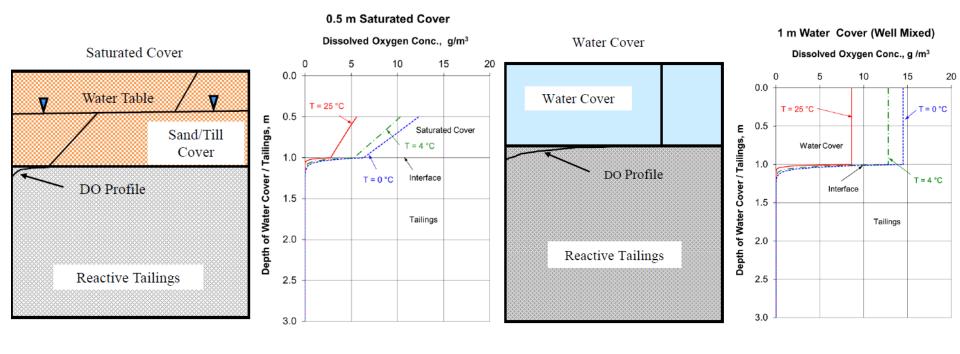



# Why should water covers and permafrost be considered in terms of climate change?

- Dam stability for man-made impoundments remains a long-term concern, especially in the context of climate change
- Extreme weather can mix and transport sediments (O<sub>2</sub> exposure)
  - Heath Steele, New Brunswick (Mian and Yanful 2004)
- With 1 m water cover, high winds along the cover surface disturbs the water and increase dissolved O<sub>2</sub>, particularly at low temperatures
  - Don Rouyn Quebec, lab experiment (Awoh et al. 2013, 2014)
- North of 60° latitude, tailings are stored under permafrost
  - Increased temperature is compromising the stability of this waste



# Reclamation of sulfidic tailings


- The need to limit O₂ diffusion
- Common reclamation strategies: physical barriers to isolate tailings





### Saturated cover vs. water cover

- long-term dam stability concerns for man-made impoundments
- negative perception of use of natural water bodies for mine waste disposal





# How do we evaluate the efficacy of saturated covers?

- How effective are saturated covers compared to water covers?
  - Investigate in terms of acid generation and metal mobility.
- How resilient are saturated covers against climate change-mediated changes in precipitation patterns?
- How will cold climatic conditions affect oxidation and metal mobility?







# Saturated covers – Approach

- Comparison of site implemented water & saturated covers in Ontario
  - radionuclides speciation, physical and chemical properties of tailings
  - potential release of contaminants into the water cover
- Development of methods for performance evaluation of saturated covers
  - column testing in laboratory
  - field testing in Yukon
- Evaluation of the role of cold climatic conditions on oxidation and metal mobility under saturated covers
  - contaminant transport behavior
  - mineral characterization
  - microbial enumerations







# Proposed study sites (South of 60°)

#### Mine Panel – Rio Algom, Elliot Lake (Ontario)

- Pyritic U tailings, vegetation contains high concentration of <sup>226</sup>Ra
- Site still requires treatment to control <sup>226</sup>Ra leaching from the mine tailings
- Both water & saturated cover conditions are field implemented and monitored
- Tailings characterization from both sites was completed at CanmetMINING
- Column testing is in progress...









# Proposed study sites (North of 60°)

#### **Mount Nansen mine site**

- Abandoned gold mine, high concentration of As and CN
- Located in the Dawson range like Casino Mine

#### **Faro mine site**

- Abandoned Pb and Zn open pit mine
- Dam holds back 70 million tonnes of tailings

#### Wolverine mine site

- Pyritic Zn-Ag-Cu-Pb-Au underground mine
- On care & maintenance by Yukon Zinc
- Closed in 2014, looking to re-open



# **Expected benefits**

- Evaluation of chemical, mineralogical, and microbiological controls on tailings stability under saturated covers
- Evaluation of the impact of cold climatic conditions on oxidation & metal mobility under water and saturated covers
- Evaluation of performance of saturated covers as an adaptation measure to climate change



# **Expected outcomes**

- Provide optimized tailings reclamation strategies to:
  - Decrease operational costs and future liabilities
  - > Enhance the environmental performance of rehabilitated mine sites in Canada
- Propose mitigation measures to adapt for climate change
  - Saturated covers as 2<sup>nd</sup> generation water cover technology



# **Actual team and partners**

#### **CanmetMINING**

Nicolas Reynier, Bill Price, Cheryl Laviolette, Roselyne Gagné-Turcotte

#### **INRS University**

Jean-Francois Blais, Audrey Le Pioufle

#### Yukon Research Center

Guillaume Nielsen

#### **Mining industry**

Casino mining

#### **Yukon Government**

Amelie Janin





## 3. Final Comments



### 3. Final Comments

- Bio-geochemical reactions in tailings are affected by environmental parameters
  - Evidence of water level as a controlling factor
  - Understanding the mechanisms involved will lead to better adaptive measures
- Working towards an alternative to deep water cover
  - Saturated water cover is a promising option
  - Ensuring resilience against rapid environmental fluctuations involves understanding microbial and geochemical processes



# **QUESTIONS**

# Thank you



© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016



