

Problem statement

- 1. Lack of certainty on how to measure and demonstrate successful reclamation
- 2. Most current approaches rely on measurement of many variables

A proposed (partial) solution

Use of measures of ecosystem fluxes of water and carbon to understand *integrated* ecosystem performance

"Trait-based" reclamation assessment

An analogy is humanhealth assessment

We can look at a number of individual parameters:

- o Glucose
- o Cholesterol
- o LDL
- o HDL
- o Triglycerides
- o Fibrinogen
- o Hemoglobin A1C
- o DHEA
- o Homocysteine
- o C-Reactive protein

Function-based reclamation assessment

e.g., eddy covariance

Or we can assess the ability of an individual to do work:

o This ability relies on the adequacy of a number of supporting functions

Eddy Covariance

Essence of method

 Vertical flux can be represented as a covariance of the vertical velocity and concentration of the entity of interest

Collective study sites — uplands only

cies
oine
ice
olar
ice

Mature (Pre-Harvest) Reference Site - Fresh

Juvenile (Post-Harvest) Reference Site - Fresh

Juvenile Reclaimed Site - Fresh

Juvenile Reclaimed Site - Fresh

Juvenile Reclaimed Site - Fresh

Juvenile Reclaimed Site - Dry

Juvenile Reclaimed Site - Dry

Juvenile Reclaimed Site - Dry

Net carbon production — reference sites only

Net carbon production — "Fresh" reclaimed sites

Net carbon production — "Fresh" and "Dry" reclaimed sites

Challenges with flux measures

- Requires expertise to install, maintain, and process data
- Equipment costs and labour are not insubstantial
- These factors do not restrict its use as a research and monitoring tool, but they do restrict the number of sites that can be feasibly maintained

Extrapolating findings to non-instrumented sites

We have tested relationships between flux measures and a number of simpler biometrics, with leaf-area index (LAI) proving most useful to date

Net carbon production and LAI — reference and reclaimed sites

LAI-age trajectories — reference sites only

LAI-age trajectories — "Fresh" reclaimed sites

LAI-age trajectories — "Fresh" and "Dry" reclaimed sites

Extension of the method to Yukon sites — Faro and Wolf Ck.

Extension of the method to Yukon sites — Faro and Wolf Ck.

Extension of the method to Yukon sites — Faro and Wolf Ck.

Acknowledgements

For support and contributions to our work:

- Craig Farnden and Audrey Lanoue, Syncrude Canada Ltd.
- Bachitter Singh, Suncor Energy Inc.
- Angeline Lovatt and Geoff Karcher, CIRNAC
- Dylan MacGregor and Daryl Hockley, SRK Consulting Inc.

Acknowledgements

Government of Canada

Gouvernement du Canada

Conclusions

- o Flux measures are integrative over space and time, and measure the ability of a number of ecosystem functions to support carbon, water, and energy cycling
- o These measures can be used to define natural ranges of variation (performance envelopes derived from reference-site data)
- o These ranges in turn can be used to provide a functionbased definition of land capability

Conclusions

- o We can relate flux measures to ground-based (and potentially remote) biometrics that can be spatially deployed across a much broader range of sites and used to assess performance and capability
- Key site characteristics (soil water regime) can be used to stratify site performance
- o Data to date suggests reclaimed sites are achieving equivalent capability as defined by this approach, and supporting ecosystem functions that allow them to perform similarly to non-mine sites

Objective

oLeverage the integrative nature of flux measurements to develop simple and scalable measures of reclamation function, performance, and equivalent capability

Ways in which flux measures are integrative

Image courtesy of S. Strilesky.

- 1. Literally
- 2. Spatially
- 3. Temporally
- 4. In the functions represented

LEGEND

- ☆ Flux Tower
- O Sampling Site
- Flux Footprint
 - Wind direction associated with fluxes

