Tulsequah Chief Mine Remediation Options

D.Ritchie, D.Taylor, R.Brown & S.Theben Northern Latitudes Reclamation Workshop, Whitehorse

September 12, 2018

AGENDA

- 1. Site overview
- 2. Remediation study
- 3. Comparison of options
- 4. Next steps

SITE OVERVIEW

- Abandoned underground base metals mine operated from 1951 to 1957
- Currently acidic waters drains directly to the Tulsequah River
- Water treatment plant was constructed and operated January 2011 until June 2012
- Plant shut-down due to of poor efficiency
 - very dilute sludge
 - 6 km haul to pond

Location & history

- Remote site in Northern
 BC
- Fly-in or barge access only
- Sits on the bank of the Tulsequah River
- ~19 km upstream of the Taku River which flows to Alaska
- Previous remediation efforts were successful for a period but could not be sustained

Objective

Not about:

- watertreatment
- ecological risk
- cleaning upPAG legacy
- backfill historicPAG rock

What this presentation will TRY to do:

Outline how a <u>collaborative approach</u> may help clean up a legacy site, while generating revenue and re-establish stakeholder trust

SI R

Historic workings

Previous plans

- Several previous studies and plans
- Industry focus on continued development
- Government Agencies focus on remediation

global environmental and advisory solutions

REMEDIATION STUDY

- Objectives:
 - Identify remediation options
 - Determine approximate costs / further work requirements
- Approach:
 - Evaluate previous activities and results
 - Assess requirements for compliance
 - Compare options performance, cost and stakeholder expectations

- West Face Capital commissioned and funded study
- SLR Consulting (Canada) Ltd. overall study lead:
 - > Ecology and water quality
 - > Study objectives
 - Remedial options
 - > Water treatment
- Patterson & Cooke underground opening backfill

Current conditions

- Acidic drainage emanating from portals
- Flows are all within Portal Creek drainage

Site features

- Remediation work in 2011:
 - Water diversions constructed but are now damaged
 - Historic PAG (HPAG) facility construction started (grading, no liner)
 - Liner materials at site + some equipment

global environmental and advisory solutions

Ecological impacts

- 2016 SLR AERA study by SLR:
 - Site-specific fish toxicity levels
 - Al, Cu, Zn exceeded BC WQG 225m from pond
 - Toxicity Reference Values exceed for Cu, Zn
 - No fish toxicity at 2.5 km transect
- Impacts appear to be predominantly due to surface water overflow
- Possibly minor impacts from pond seepage

REMEDIATION OPTIONS

- Common objectives:
 - Stop surface overflows repair pond, upgrade treatment plant, add pumping
 - WTP is in good condition, add pumps, tankage, and thickener to improve performance
 - Implement freshwater diversions to reduce flows (plant capacity 40 m³/day)
 - Operate Exfiltration Pond at a low level to reduce seepage and store storm runoff
 - Mitigate HPAG rock drainage relocate or cover in-place (to shed runoff)
 - Inhibit or control portal drainage closure plugs, or manage with pipelines to treatment
- Two categories considered:
 - Remediation Options clean-up only (no plan for new mining)
 - Closure Options achieve compliance, remediate as part of mine development

Remediation Options (clean-up, no mining)

- Alternative A
 - Upgrade treatment plant
 - Relocate HPAG to permanently lined facility
 - Pump from pond to treatment plant
 - Maintain pond empty to reduce seepage
- Alternative B
 - As above but move HPAG underground
- Alternative C
 - Hybrid of A and B
 - Addresses risk of limited underground capacity

Closure Options (compliance, then develop mine)

- Alternative D
 - Cover HPAG in-place (temporary)
 - Progressively move PAG rock/tailings underground for
- Alternative E
 - Relocate HPAG to temporary facility
 - Move all PAG rock/tailings underground for closure
- Alternative F
 - Install new water treatment plant to handle all flows

The preferred alternatives

- Alternative C is the preferred Remediation Option
 - Upgrade water treatment plant
 - Maximize underground storage of HPAG rock
 - Place closure plugs in portals
 - Construct a permanent lined surface HPAG facility
 - On-going water treatment
- Alternative D is the preferred Closure Option
 - Upgrade water treatment plant
 - Temporary cover for HPAG (water-shedding)
- Cost of *Remediation Options* ~ 2x *Closure Options* (order-of-magnitude)
- Common treatment plant upgrade (new equipment)
 - Pre-contact tank to improve HDS operation
 - 3m diameter sludge thickener
 - Sludge pumps
 - Expand building ~ 6m

NEXT STEPS

- Consultation, then refine plans:
 - First Nation (TRTFN)
 - Provincial & Federal Authorities
- Sampling of water and HPAG:
 - Geochemical sampling to determine extent of HPAG
 - Water quality sampling for plant upgrade design
- Develop permitting plan & schedule
- Advance design
- Implementation:
 - Achieve compliance before moving to new development (!)
 - Phased implementation is practical:
 - 1. Repair the treatment plant & install pumps and pipelines
 - 2. Construct or repair freshwater diversions (to divert storm runoff)
 - 3. Relocate HPAG
 - 4. Other remediation activates

Conclusions

- Clean-up will cost a lot of taxpayer money
- Lack of trust that mine development can successfully clean up the site
- A <u>collaborative approach</u> may work for all:
 - Step 1 Establish Trust: Work with communities to bring the site into compliance
 - Step 2 Mine Development: Clean up site in tandem with mining
 - Step 3 Closure Close out site properly; Plug ramps

