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RTM Examples Related to Waste Rock

• Case Study:
• Diavik Waste Rock Research Project - reactive transport 

model (RTM) to identify scaling relationships for ARD 
from laboratory experiments to full-scale piles



Case Study: 
Diavik Waste Rock Research Project
David Wilson, David Blowes and co-
workers (UWaterloo), Wilson et al 
(2018a,b)



Mechanistic scale-up

15 m (8.2 x 107 kg)

2 m (9,300 kg)

Hypothesis: RTM can be used to implement an integrated
conceptual model of sulfide waste rock weathering for laboratory
experiments (i.e. humidity cells), then scaled to assess the
geochemical evolution of a waste rock pile (i.e. full scale pile).

80 m (1.2 x 1011 kg)

Full Scale Pile

0.1 m (1 kg)

Humidity Cells

Active Zone Lysimeters

Test Piles

Wilson et al (2018a,b)



Humidity Cells                 Test Piles
Temperature

Constant: 22 °C and 5 °C

Hydrology
Constant: 500 mL wk-1

Geochemistry
Gas: 
• Atmospheric 𝑃𝑃𝑂𝑂2 ,𝑃𝑃𝐶𝐶𝑂𝑂2
Liquid:
• DI
Solid: 
• Sulfides: pyrrhotite, chalcopyrite, 

sphalerite, pentlandite (total 0.18 wt.% S)
• Host: calcite, dolomite, biotite, muscovite, 

albite 
• Secondary: jarosite, ferrihydrite, gibbsite, 

amorphous silica, gypsum, siderite

Temperature
Spatially and temporally variable average daily 
temperature

Hydrology
Temporally variable FAO-PM calculated infiltration
Constant KS and soil parameters from characterization 
of site materials 
Flow stopped under freezing conditions

Geochemistry
Gas: 
• Atmospheric 𝑃𝑃𝑂𝑂2 ,𝑃𝑃𝐶𝐶𝑂𝑂2
Liquid:
• Site precipitation
Solid: 
• Sulfides: pyrrhotite, chalcopyrite, sphalerite, 

pentlandite
• Host: calcite, dolomite, biotite, muscovite, albite 
• Secondary: jarosite, ferrihydrite, gibbsite, 

amorphous silica, gypsum, siderite

Wilson et al (2018a,b)
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Lessons Learned – Diavik Case Study 

• A reactive transport model calibrated to laboratory 
experiment results can be used to provide realistic multi-
year assessment of waste rock geochemical evolution on 
the test pile scale
• Geochemistry identical, BUT:
• Scale-up requires consideration of additional processes (freeze-

thaw, temperature fluctuations, hydraulic response)  

• Commonly measured parameters can be used to constrain 
the modeling (does not need to be overly complex!): 
• Mineralogy (host rocks and sulfide minerals)
• Infiltration
• Temperature
• Particle size distribution



RTM Examples Related to Waste Rock

• Case Study:
• Diavik Waste Rock Research Project - reactive transport 

model (RTM) to identify scaling relationships for ARD 
from laboratory experiments to full-scale piles

• Scenario Analyses:
• Effect of internal structure, heterogeneity, and scale on 

ARD release: Do pile construction methods affect ARD 
release, and if so, how?



Effect of internal structure, 
heterogeneity, and scale on ARD 
release
Katherine Raymond, MSc-student 

Photo: Bas Vriens



End Dumping

Push Dumping

Random grain-size 
distribution within core

Sub-horizontal 
traffic surface 

compaction

Fining-upwards 
grain size trends 

along batters

Fining-upwards 
within each bench 

due to gravity 
segregation

Fine upper zone
Evenly-graded 
middle zone Very coarse zone 

beyond toe

Construction Methods

Multiple zones following 
angle of repose 
(Hawley & Cunning, 2017)

(Anterrieau et al, 2010)



Influence of Heterogeneity 
and Spatial Trends
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Homogeneous
Push Dump
End Dump

Construction Method
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Push Dump 43.6 29%
End Dump 54.6 12%
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Push Dump 39.8 36%
End Dump 38.4 38%
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Homogeneous 36.2 -
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Lessons learned – construction 
methods
• Inclusion of heterogeneity and construction 

methods in RTM can have a significant impact on 
predicted maximum mass loading rates (reduced 
from homogeneous model by 36 – 43%)

• Scale and presence of traffic surfaces are most 
important

• Mass loading rates were comparable by the multi-lift
pile for between construction methods (push vs. end 
dumping) 



RTM Examples Related to Waste Rock

• Case Study:
• Diavik Waste Rock Research Project - reactive transport 

model (RTM) to identify scaling relationships for ARD 
from laboratory experiments to full-scale piles

• Scenario Analyses:
• Effect of internal structure, heterogeneity, and scale on 

ARD release: Do pile construction methods affect ARD 
release, and if so, how?

• Effect of climate change on ARD generation and release 
under cold climate conditions: In search for the tipping 
point.



Permafrost and Mine Waste Storage Planning

Schudel, unpublished



Current work:
• Consider heat from sulfide 

mineral oxidation
• Capture effects of freeze-thaw
• Insulation from snow cover
• Influence of TDS/solutes on water 

freezing-temperature
• Compare differences in potential 

mass loadings under different 
annual temperature changes due 
to climate change

ARD generation and release under cold 
climate conditions, Xueying Yi, MSc student 



Conceptual 
Model

Geothermal heat flux

Seasonal climate forcing
Precip, T

ARD release at 
base of waste 
rock??

Waste Rock

Natural 
sediments 

or rock

Active Layer

Permafrost

• Sulfide mineral 
oxidation in active 
layer

• Seasonally 
controlled

• Exothermic: 
generation of heat 
with effects on 
active layer and 
permafrost



Simulated temperature profiles as a 
function of average yearly temperatures 

• Pyrite 
oxidation rate 
at 25 deg C: 
1.7 x 10-10 mol
dm-3 bulk s-1

• Minor 
differences in 
active layer 
thickness

• No ARD 
release in any 
of the cases 
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[m

]



Simulated temperature profiles as a 
function of average yearly temperatures 

• Pyrite 
oxidation rate 
at 25 deg C: 
1.7 x 10-8 mol
dm-3 bulk s-1

• Active layer 
reaches below 
based of WRP 
in all cases 

• ARD release in 
all cases 
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Simulated temperature profiles as a 
function of average yearly temperatures 

• Pyrite 
oxidation rate 
at 25 deg C: 
1.7 x 10-9 mol
dm-3 bulk s-1

• Tipping Point!!
• ARD release 

due to 
increased 
MAAT 
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Basal sulfate loading of intermediate 
scenario over time with MAAT = -9 
deg C and -6 deg C



Lessons learned – cold climate 
conditions and climate change
• Just starting to learn  
• Preliminary simulation results suggest that 

climate change will have a limited effect in many 
cases

• On the other hand, effect can be substantial, if 
tipping point is reached

• Increase of active layer thickness to base of WRP 
may lead to short-lived high mass loadings. Food 
for thought.



Where do we go from here?
• Reactive transport models for simulating processes 

in mine tailings and waste rock are available
• MIN3P: 20+ year development and ongoing
• Complex geometry can now be included
• Computational efficiency allows to carry our larger 

scale 2D simulations, if needed
• Looking towards expanding model capabilities for 

non-isothermal, multiphase systems



Is there interest in the ARD community to use 
RTM models? If so, what are you looking for?

Reactive Transport Modeling Interest Survey
https://tinyurl.com/v5bw5dl

…or grab a paper survey at reception table!

https://tinyurl.com/v5bw5dl
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Oxidation by Fe3+:
𝐹𝐹𝐹𝐹2+ + 0.25𝑂𝑂2(𝑎𝑎𝑎𝑎) + 𝐻𝐻+ → Fe3+ + 0.5𝐻𝐻2𝑂𝑂

𝐹𝐹𝐹𝐹0.852𝑁𝑁𝑁𝑁0.004𝐶𝐶𝐶𝐶0.001𝑆𝑆 + 1.714𝐹𝐹𝐹𝐹3+ →
2.566𝐹𝐹𝐹𝐹2+ + 0.004𝑁𝑁𝑁𝑁2+ + 0.001𝐶𝐶𝐶𝐶2+ + 𝑆𝑆0

𝑆𝑆0 + 1.5𝑂𝑂2(𝑎𝑎𝑎𝑎) + 𝐻𝐻2𝑂𝑂 → 𝑆𝑆𝑂𝑂42− + 2𝐻𝐻+

Oxidation by O2(aq):
𝐹𝐹𝐹𝐹0.852𝑁𝑁𝑁𝑁0.004𝐶𝐶𝐶𝐶0.001𝑆𝑆 + 1.9285𝑂𝑂2(𝑎𝑎𝑎𝑎) + 0.143𝐻𝐻2𝑂𝑂 →

0.852𝐹𝐹𝐹𝐹2+ + 0.004𝑁𝑁𝑁𝑁2+ + 0.001𝐶𝐶𝐶𝐶2+ + 𝑆𝑆𝑂𝑂42− + 0.286𝐻𝐻+

Sulfide oxidation simulated using shrinking core model

Schippers and Sand, 1999

polysulfide mechanism of 
sulfide mineral oxidation

microbial 
catalysis

Mayer et al., 2002

Conceptual Model – Theory
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