Acid Generation and Metal Release in Oil Sands Froth Treatment Tailings

Matthew Lindsay, Ph.D.

Associate Professor NSERC/Syncrude IRC in Mine Closure Geochemistry Department of Geological Sciences University of Saskatchewan matt.lindsay@usask.ca www.mbjlindsay.ca

Oil Sands Deposits

- oil sands deposits contain 168B barrels of proven bitumen reserves
- hosted in sands and sandstones of the Cretaceous McMurray formation
- ore comprised of:
 - bitumen (8–15% w/w)
 - water (2–5% w/w)
 - solids (80–90% w/w)
- approximately 3.4% (4800 km²) of deposit area accessible by surface mining
 - active mining footprint > 950 km² (2017)

Oil Sands Ore

- contains bitumen characterized by:
 - high viscosity and density
 - high molecular weight carbon
 - low hydrogen-to-carbon ratio
 - elevated sulfur and nitrogen
- extraction and upgrading required to produce synthetic crude oil
 - diluted bitumen also exported

Surface Mining

- open pit mining used where ore is within
 - ~100 m of surface
 - truck and shovel method
 - high recovery rates (cutoff grade ~8% w/w)
 - open pits can exceed 10 km²
 - large water and energy requirements
 - accounts for ~50% of bitumen production

10 km

Suncor Millennium Mine

Syncrude Mildred Lake Mine

Fort McMurray, AB

1984

Image Credit: Rob Simmon and Jesse Allen, NASA Earth Observatory *Source:* https://earthobservatory.nasa.gov/images/76559/athabasca-oil-sands

Data: https://aer.ca/protecting-what-matters/holding-industry-accountable/industry-performance/oil-sands-mining-water-use#summary *Figure after:* Mikula (2012) *In:* Restoration and Reclamation of Boreal Ecosystems. Ch. 6, pp. 103-122.

Froth Treatment Tailings (FTT)

- produced during bitumen froth treatment
 - diluent hydrocarbons added to aerated bitumen froth lowers viscosity and liberates entrained solids
 - solids comprised of (phyllo)silicates, oxides, carbonates, and sulfides
- sub-aerial or sub-aqueous deposition within engineering tailings facilities
 - diluent recovered before hydrotransport

FTT Geochemistry

- sulfides concentrated in FTT relative to other tailings streams
 - principally pyrite and marcasite
- potential environmental concerns include:
 - acid generation
 - metal(loid) release
 - biogenic gas production
- geochemical evolution variable among mines and within deposits
 - sub-aerial versus sub-aqueous deposition
 - naphthanic versus parrafinic solvent
 - differences in ore mineralogy and processing

Plant 6 FTT Deposit

partially water-saturated beach deposit
located in Mildred Lake Settling Basin (MLSB)

approximate sub-aerial extent in 08/2018

500 m

Image Credit: Google Earth © 2019 DigitalGlobe

Field Study: 2013

- purpose:
 - preliminary examination of FTT geochemistry and mineralogy
- methods:
 - auger: 0.0 0.3 m b.g.s. (frozen upper layer)
 - sonic coring: 1.3 3.3 and 3.3 5.3 m BGS
- analyses:
 - particle-size distribution: laser diffraction
 - mineralogy: optical, SEM, XRD
 - geochemistry: digestions, EPMA, PCA
 - ABA: modified Sobek with siderite correction

- silicates + phyllosilicates dominate
- pyrite is the principal sulfide
 - marcasite also observed
 - complex sulfide textures
- carbonate content similar to sulfide content
 - siderite dominates
- weathered FTT can have large amorphous component

Mineral	Ideal formula	mean ± 1σ (wt. %)	median (wt. %)	minimum (wt. %)	maximum (wt. %)
Almandine	Fe3Al2(SiO4)3	$\textbf{0.76} \pm \textbf{0.35}$	0.86	0.24	1.2
Dravite	NaMg3Al6(BO3)3Si6O18(OH)4	4.4 ± 1.5	4.5	1.7	7.2
Quartz	SiO ₂	57 ± 13	61	24	73
Zircon	ZrSiO4	$\textbf{3.3} \pm \textbf{1.0}$	3.2	0.57	4.7
Phyllosilicates					
Kaolinite	Al2Si2O5(OH)4	5.7 ± 9.0	2.6	0.59	39
Illite	K0.65Al20(Al0.65Si3.35O10)(OH)2	2.6 ± 0.72	2.6	1.4	3.4
Illite-Smectite		6.7 ± 4.5	6.8	2.3	15
Oxides					
Anatase	TiO2	2.4 ± 0.66	2.4	1.0	3.7
Ilmenite	FeTiO3	1.3 ± 0.51	1.4	0.47	2.1
Magnetite	Fe3O4	$\textbf{0.27} \pm \textbf{0.11}$	0.29	0.12	0.47
Rutile	TiO2	5.4±1.6	5.6	2.7	8.1
Carbonates					
Ankerite	Ca(Fe, Mg, Mn)(CO3)2	$\textbf{0.82} \pm \textbf{0.19}$	0.79	0.52	1.1
Calcite	CaCO3	0.52 ± 0.53	0.35	0.23	1.8
Dolomite	CaMg(CO3)2	2.5 ± 1.8	1.9	0.46	6.7
Siderite	FeCO3	6.6±3.8	5.6	2.4	18
Sulfides					
Pyrite	FeS2	6.5 ± 2.7	7.0	1.4	9.9
Marcasite	FeS2	1.0 ± 0.47	0.95	0.25	2.1
Sulfates					
Gypsum	CaSO4·2H2O	$\textbf{0.71} \pm \textbf{0.40}$	0.56	0.25	1.1
Jarosite	KFe3(SO4)2(OH)6	0.22 ± 0.07	0.25	0.11	0.27

Quantification by Rietveld refinement according to:

Raudsepp and Pani (2003) MAC Short Course Vol. 3, pp. 165–180.

- a–c. FTT sample in (a) transmitted ppl, (b) transmitted xpl, and (c) reflected ppl;
- d. leucoxene textured ilmentite (IIm) in reflected ppl with rutile (Rt) or anatase (Ant), pyrite (Py), magnetite (Mag), dravite (Drv) and quartz (Qtz);
- e. siderite (Sd) in transmitted ppl (e);
- f. acicular Py and marcasite (Mrc) and elongate subhedral Py with Sd and Qtz;
- g–h. clustered Py framboids with discrete Mag, Sd, Rt and Qtz grains; and
- i. Mrc rim on weathered Py framboid with Sd.

Polished 30 µm thin sections. ppl: plane polarized light xpl: cross-polarized light

Source: Lindsay et al. (2019) Appl. Geochem. 102: 186-196. https://doi.org/10.1016/j.apgeochem.2019.02.001

- a. euhedral pyrite with discrete framboids at arrows;
- b. clustered and intergrown pyrite framboids;
- c. pyrite (Py) intergrowth with quartz (Qtz);
- d. pyrite overgrowth on remnant framboids;
- e. pyrite permineralization of organic matter; and
- f. acicular radiating pyrite with marcasite.

Backscattered electron images of polished thin sections.

Geochemistry

- major element composition generally reflect mineral assemblage
- pyrite contains As, Cu, Co, Fe, Mn, Ni (plus trace Se and V)
- Fe, Mn, Ni, Pb, Sr and Zn associated with carbonates
- REEs, Th and U likely associated with zircon, monazite, and xenotime
- Cr and V likely associated with multiple phases

Acid-Base Accounting

- consistent negative net neutralization potential (NNP)
- low or negative neutralization potential (NP)
 - negative values attributed to partial dissolution of Fe(II)-bearing phases during acid addition
- potential for acid generation during oxidative weathering
 - findings consistent with mineralogical analysis

Field Study: 2015

- purpose:
 - preliminary examination of FTT pore-water chemistry
- methods:
 - direct-push coring to refusal (< 1 to ~3 m bgs)
 - hardpan encountered at L04, L05, L06
- analyses:
 - pore-water: squeezing, chemistry
 - mineralogy: optical, SEM, XRD
 - geochemistry: digestions, XRF/XAS
 - ABA: modified Sobek with siderite correction
 - microbiology: 16S rRNA gene sequencing

Pore-Water Chemistry

- Locations 01a–03:
 - circumneutral pH, relatively low dissolved metal concentrations
- Locations 04–05:
 - extensive hard pan (limited sample)
- Location 06:
 - acidic pH, no alkalinity, high EC and dissolved metal concentrations
- Location 07:
 - evidence of weathering front
 - Mg and alkalinity low in upper 0.5 m
 - acidic conditions likely to develop with time

Pore-Water Chemistry

- large increase in dissolved metal(loid)s at pH < 5
 - increased solubility of metal (hydr)oxides and carbonates with decreasing pH
 - limited capacity for metal(loid) sorption

Arsenic Mobility

- As released during pyrite oxidation
- As(V) accumulation in vadose zone
 - associated with Fe(III) (oxyhydr)oxides
- long-term mobility likely controlled by:
 - pH-dependent precipitation-dissolution and sorption reactions
 - As and Fe redox cycling

3

Left: synchrotron µXRF maps of As speciation. Middle: reflected light microscope photograph. Right: synchrotron µXANES spectra.

Normalized Absorbance

- wider range of sulfide and carbonate contents than observed in 2013 study
 - sulfides: 1.3 to 27 wt. % (median 7.2 wt. %)
 - carbonates: < 1 to 15 wt. % (median 5.4 wt. %)
 - siderite accounted for 61 to 100% of carbonates
- varied degree of weathering
 - sulfides and carbonates depleted in highly weathered samples
 - jarosite and gypsum accumulation apparent
- large amorphous component in weathered tailings
 - ongoing research to identify these phases and assess their influence on metal(loid) mobility

Laboratory Study: 2016–present

- purpose:
 - assess acid generation and metal leaching over time in varied samples
- methods:
 - 1 kg (eq. dry wt.) of FTT (no solvent wash) placed in each column
 - glass wool and perforated support
 - ambient lab conditions (PO₂, T, RH)
 - flushed with 1 L of DI every 7th day
- analyses:
 - chemical analysis of leachate
 - mineralogy at beginning and end

Column Drainage

- drainage pH ranges from ~2 to 9
 - weathered FTT samples generated acid for extended time
 - evidence of ongoing oxidation in fresh/nonweathered FTT samples
- ongoing S release indicative of sulfidemineral oxidation
 - apparent in fresh FTT samples and
 - P6-16-F1, P6-16-F2a, P6-16-F2b
 - S release declining with time for P6-15-06

Column Drainage

- metal(loid)s present in leachate
 - concentrations not representative of potential field conditions
- concentrations generally low in pH 7–9 leachate
 - likely due to sorption or co-precipitation reactions with Fe(III) (oxyhydr)oxides
- highest concentrations observed in FTT sample P6-15-06
 - exhibits pH < 3 and evidence of active oxidation (i.e., S release)

Column Solids

- ABA results indicate that all FTT samples are likely acid generating
- only initially weathered samples generated drainage with pH < 3
- evidence of ongoing sulfide-mineral oxidation in initially non-weathered samples
 - sustained S, Ca and Mg release
- carbonate assemblage comprised of 60 to 100% siderite
 - lower siderite content in initially non-weathered samples

Lessons Learned

- acid generation and metal leaching
 - acid rock drainage type waters can be generated
 - sulfide content and water-saturation are key variables
- acidic waters (pH < 5) characterized by:
 - high dissolved sulfate and iron concentrations
 - high dissolved metal(loid) concentrations (i.e., As, Se, V, Ni, Zn, Cu, Co)
- time to acid generation likely fairly long
 - organics may limit initial oxidation rates
 - metal(loid) source terms change over time
- acid generation and metal transport may be mitigated
 - sub-aqueous disposal, soil covers, etc.
 - sulfidogenesis, passive treatment, etc.

Ongoing/Future Research

- develop models of the geochemical evolution of FTT deposits
- assess efficacy of current oil sands mine reclamation strategies
- evaluate new approaches for mitigating acid generation and metal release

Industrial Research Chair in Mine Closure Geochemistry

Field/Lab Support:

Noel Galuschik, Dr. Soumya Das, Drake Meili, Lawrence Swerhone University of Saskatchewan

> Dr. Jordan Hamilton, Dallas Heisler, Wendy Kline, Tara Penner, Jessica Piercey Syncrude Canada Ltd.

> > **ConeTec Investigations**