Case studies to ignite your understanding of combusting waste rock management and controls

Tyler Birkham and Mike O'Kane

2020 BC MEND ML/ARD Workshop

Three Case Studies

- Two mine sites with spontaneous combustion (Australia)
- One from Canada with combusting waste rock (not spontaneous)
-note the site specificity and range as to why combustion is an issue and how it is managed.....

Introduction

Spontaneous combustion

- 'High' reactive sulphide content and organic carbon content
-' good ole' combustion
 - 'High' organic carbon concentration

Introduction

 Primary oxygen resupply mechanism in mine rock stockpiles (MRS) typically by convection (temperature induced flow of pore

Rock Placement Strategies to Enhance Operational and Closure Performance of Mine Rock Stockpiles Phase 1 Work Program – Review, Assessment & Summary of Improved Construction Methods

High vs Low Air Flow Capacity

Finer- and Coarser-Textured Mine Rock

VS.

Conceptualization... Finer-Textured Mine Rock

Coarser-Textured Mine Rock

Case Study 1

- High S, high C
- Reactive pyritic shale
- Original problem emerged with unintentional blast hole detonation

Spontaneous Combustion

 Spontaneous combustion - ability to self heat with temperatures greater than 600°C

8 okane

MRS construction - pre 1995

Internal MRS Dynamics – early 2000

 Capture / confirm essential data pre – spontaneous combustion

- Install instrumentation into a dump during construction
- Avoid post installation problems

Trial Data

Dec. 2 2020

MRS Design to Limit Airflow

MRS Design to Limit Airflow

- Class B and C overburden ...10 m high lifts with 2 m paddock dumped layers.
- Class D overburden ... paddock dumped to allow to cool.

Limited airflow controlling temperature

Waste Rock Management strategy

Temperature risk

PAF Sulfur Content	Paddock Dumping	Co-Disposal 5 m Tip	Co-Disposal 10 m Tip	10:2 Layered PAF Co- Disposal	Co-Disposal 30 m Tip	Co-Disposal 10m Blocky NAF	Co-Disposal High Wall Tip
<1% 1-3% 3-5% 5-10%							
10-18% >18%							

Case Study 2

- Spontaneous combustion pyritic shales
- High visibility of combustion severely affecting stakeholder perception

Case Study 2

okane

Detailed material characterization

Detailed material characterization

Air Permeability (m²)

Modelling linking gas flux to temperature

Dec 2 2020

Case Study 2 Management Plan

- Detailed management plan developed for various stages of pit development
- Plan implementation and performance monitoring in progress

Case Study 3

- Removal of ~6.5MBCM of material within a combusting waste zone
- Low S, high organic carbon

22

Define combusting zones

Combustion zones

Combustion zones

Combustion zones

Trial Program – Equipment

Dust and air quality

Colour of Gas	SO₂ (ppm)	VOCs (ppm)	NO (ppm)	NH₃ (ppm)	NO₂ (ppm)	CO (ppm)	H₂S (ppm)	LEL (% LEL)	CO₂ (% Vol)
Yellow	19.9	653.56	19.5	285	0.6	1500 (MAX)	33.3	32	0.61
Blue	19.9	44.0	41.5	0	0	71	ο	0	N/A

 Table 5.3

 Comparison of Yellow and Blue Gas Concentrations

What is our current understanding?

Trial program

Sensor	Тетр
sp1	162
16	43
17	337.5
22	53.5
23	209.5
28	13
29	218.5
31	347.5
32	295.5
33	119
35	429.5
36	398
37	307.5

Trial program

Sensor	Тетр
sp1	126
16	22
17	63
22	35
23	74
28	0
29	36
31	87
32	20
33	11
35	45
36	26
37	36

Conceptual model

Black, high carbon (fuel) waste rock – temperature less than 150 deg C, zone into which combustion is likely to progress given fuel source and proximity to high temperature

Burningfront with sufficient fuel, temperature and oxygen

Hot (greater than 300 deg C) waste rock, lighter colour and lower (consumed) organic carbon concentration. High thermal mass but no or limited active combustion due to fuel scarcity.

Lateral influx of atmospheric O₂ through coarse and high permeability segregated layers at base of lifts, flow of O₂ upward through hot combustion zone, surface venting of heated air

Standard self-heating testing

Forced air (oxygen flux) is critical!

Control of oxygen availability

Case Study 3 Management strategy

- Thin, exposed surficial lifts sufficient to cool combusting mine rock
- Option for in-pit disposal has emerged
 - Pit to be flooded and combusting mine rock submerged
- Currently working through mine plan and material balance/schedule for thin lift cooling and in-pit disposal (flooding and submersion)

Conclusion

 Integrate material characterization with MRS design....

-control structure and placement
 -control hydrology and water retention
 - control gas (oxygen) flow

Manage combustion

Contact info@okc-sk.com with questions or to chat!

Advancing Mine Closure Solutions

Okane BC MEND ML/ARD Workshop Dec 2 2020

The International Network for Acid Prevention

INAP

CRC TIME

UNIVERSITY OF SASKATCHEWAN Mine Overlay Site Testing Facility GLOBAL INSTITUTE FOR WATER SECURITY MOSTEACULTY JUSASK CA