Improvements to the water quality of the Berkeley Pit lake, Butte, Montana

Chris Gammons

Montana Tech, Dept. of Geological Engineering, Butte, MT cgammons@mtech.edu

Talk outline

- Trends in pit-lake chemistry, 2005 to present
- Changes to how the pit has been managed
- Changes to vertical structure of the lake
- Geochemical processes
- Possible future trends

Berkeley Pit: Sources of Info

- Pitwatch website: <u>www.pitwatch.org/</u>
- MBMG GWIC database: <u>http://mbmggwic.mtech.edu/</u> Search by name: Berkeley Pit, Silver Bow County, "show all sites" Vast amount of chemistry and water level data stored on this site
- Montana Bureau of Mines & Geology publications

Go to <u>http://www.mbmg.mtech.edu/mbmgcat/catmain.asp</u> and type in keyword: "Berkeley Pit"

Selected journal articles:

- Gammons C.H. and Icopini G.A., 2019, Improvements to the water quality of the acidic Berkeley Pit lake due to the combined effects of copper recovery and sludge disposal. *Mine Water and the Environment*, v. 39, p. 427-439.
- Tucci, N.J., and Gammons, C.H., 2015, Influence of copper recovery on the water quality of the acidic Berkeley Pit lake, Montana, USA: Environmental Science and Technology, v. 49, p. 4081-4088.
- Gammons, C.H., and Duaime, T.E., 2006, Long-term changes in the geochemistry and limnology of the Berkeley pit-lake, Butte, Montana: Mine Water and the Environment, v. 25, p. 76-85.
- Pellicori, D.A., Gammons, C.H., and Poulson, S.R., 2005, Geochemistry and stable isotope composition of the Berkeley pit lake and surrounding mine waters, Butte, Montana: Applied Geochemistry, v. 20, p. 2116-2137.
- Davis, A., and Ashenberg, D., 1989, The aqueous geochemistry of the Berkeley Pit, Butte, Montana, USA: Applied Geochemistry, v. 44, p. 23-36.

Berkeley Pit: pH trends

RC boat

HMS Berkeley

Berkeley Pit: Fe trends

Between 2003 and 2015

- Precipitation of > 400 million pounds of Fe-rich solids from the water column
- Mix of schwertmannite and jarosite

SEM photos taken by Dick Berg

What caused the changes to the lake chemistry?

1) Copper recovery project

2) Disposal of lime-treatment sludge

Copper Recovery: Cementation

$Cu^{2+} + Fe \rightarrow Fe^{2+} + Cu$

Berkeley Pit, circa 2005

Lime Treatment: Sludge disposal

- 2003 to 2018*: Treated Horseshoe Bend Springs
- Two stage, high-density sludge
- Sludge alkalinity: ~ 1.1 eq/L
- Discharge rate ~ 1M L/day

 Alkalinity is stored in metal-hydroxide solids

Treated water re-used by active mine

*2018 to present: Treating Berkeley Pit (Sludge parameters have changed)

Berkeley Pit pH titration (in-class demonstration)

base added (mg/L CaCO3 eq)

Basaluminite: $AI_4(SO_4)(OH)_{10} \cdot 5H_2O$

Copper Recovery • Mixed and oxidized the lake Sludge Disposal • Raised pH

View from lake level

View from top

Berkeley Pit, circa 2005

Lime Treatment Cu cementation evaporation Sludge rain, water O₂ diffusion snow table ∇ epilimnion schwertmannite, jarosite \leftarrow Fe³⁺ \leftarrow Fe²⁺ thermocline hypolimnion seasonal mixing chemocline gravitational settling Cu recovery intake monimodeep groundwater limnion influx Orange Layer pit sediment

Flooded underground mine workings

Transition from meromictic to holomictic lake

Berkeley Pit Selected Datasonde Profiles, 2003 to 2018

Berkeley Pit: acidity trends

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

 Σ Acidity (mol/L) = *m*H⁺

+ $2x(mFe^{2+} + mCu^{2+} + mMn^{2+} + mZn^{2+})$ + $3x(mFe^{3+} + mAl^{3+})$

% total acidity as individual solutes

If alkaline sludge is still being dumped in the lake, why has pH and acidity of Berkeley Pit leveled off?

- Aluminum buffering
- Buffering by water-rock reactions on the pit walls?
- Alkalinity of sludge balanced by influent acidity of deep groundwater?

Work in progress

Berkeley Pit, circa 2020

Conclusions

- Sludge disposal has reduced acidity and raised pH of Berkeley Pit from ~ 2.5 to ~ 4
- Circulation during copper recovery eliminated lake stratification.. Lake is now well-mixed vertically
- Presence of dissolved oxygen from top to bottom
- Dissolved Fe concentrations dropped from ~ 1000 mg/L to < 10 mg/L
- Phosphate, arsenate stripped out of water column

What lies ahead?

- Pumping and lime-treatment of Berkeley Pit lake began in 2018 and will continue for a long time
 - Pit-lake surface elevation no longer rising
 - Sludge disposed in Berkeley Pit
- Continued disposal of sludge should cause precipitation of Al-solids and a slow rise in pH
- Concentrations of Cu, Zn, Cd not expected to decrease in foreseeable future
 - the lake is still toxic to waterfowl

Questions?

Acknowledgements

- Montana Bureau of Mines and Geology
 - Ted Duaime, Gary Icopini, Steve McGrath, Nick Tucci
- Montana Resources, BP-ARCO, MT DEQ