

H.C. Liang, Manager, Water Studies Brent Baker, Director, Engineering David Kratochvil, President & CEO

Review of Non-Biological Selenium Treatment – Selen-IX™

Selen-IX[™] Plants: From Lab to Pilot to Full-Scale

New Full-Scale Applications

Lake Koocanusa Conundrum – Challenges of Trans-Boundary Lake

Why Non-Biological Treatment for Selenium?

	4 N
\approx	

Reach end-of-pipe selenium concentration < 0.5 μg/L

Avoid organoselenium issues & chronic effects

۷	2
	3

Stable refractory residue with off-take potential

Avoid bio treatment issues: nutrient add, COD/BOD, TSS

Handle large fluctuations in flow and mass loading and temperature

Provide seasonal or intermittent treatment

Selen-IX[™] Plants – From Lab to Pilot to Full-Scale

Selen-IX[™] = IX + ERC for Selective Se Removal

Selectively remove selenium to < 0.5 μ g/L while fixing selenium into small quantity of stable inorganic solid residue

- Selective removal of Se from impacted mine water
- Produce treated water with Se < 0.5 μg/L
- Pre-concentrate Se by factor of 20 to 2000x

 Remove Se from pre-concentrated brine solution from IX regeneration Stabilize Se into non-toxic inorganic residue suitable for re-use

Selen-IX[™] Commercialization Timeline

2012 – 2017: Lab & Pilots

2018: Industrial Demonstration Consortium of Major Miners

Selen-IX[™] Wide Range of Feed Water Characteristics Tested

Effect of Sulphate on Selen-IX[™] Efficiency

- IX resin capacity increases with decreasing [SO₄²⁻]
- Treating water with 75 mg/L SO₄²⁻ much more efficient compared to 2,000 mg/L SO₄²⁻
- End-of-pipe [Se] not sensitive to influent selenium concentrations
- Treating higher flowrate more efficient in some cases

How Well Does Selen-IX[™] Scale Up?

Wash Curves for Pilot and Full-Scale Operations

Selenium Removal by IX in Pilot Plant

Selenium Removal by IX in Full-Scale Plant

Selenium Reduction in ERC – Pilot and Full-Scale

Cell Operating Voltage

Rectifiers

Technical Data:

Input voltage: Input current: Power factor:

DC output voltage: DC output current:

Duty factor: Ripple: Adjustment: Control: Control accuracy:

Cooling: Ambient temperature: Site altitude:

Dimensions:

480V, 3Ph, 50-60Hz + GND 223A > 0.94

20 V 7500 A

100 % < 3 % across full range of control 1 - 100 % constant current and voltage control < 1 % of rated output

Air-Cooled up to 100 °F up to 5200 feet above sea level

39/ 32/ 79 (W/ D/ H) inches (+ 4 inch base)

Key Lessons from Scale-Up

Full-Scale Performance Predictable from Good Pilot Testing Data:

- IX
 - Flow distribution
 - Treated water selenium concentrations
- ERC
 - Selenium reduction
 - Operating voltage

Cautionary Tale:

Rectifiers – Work with vendors with good understanding of specifications

Full-Scale Selen-IX[™] Facilities

Kemess Selen-IX[™] Plant – BC, Canada

Project Drivers

Design Parameters

Remove selenium to < 2 μ g/L and fix into stable residue for tailings disposal

Flow rate: 1,200 gpm (6,500 m³/d) Se discharge limit: 0.002 mg/L (BC WQG) IX Columns Residence time: 18 mins ERC Power: 500 kW Residue: Max ~ 4 t/d filter cake

Products of Kemess WTP

Coal Ash Pond Selen-IX[™] WTP – Eastern USA

Project Drivers

Design Parameters

Intermittent operation with fast ramp up/down to reliably remove selenate to < 5 μg/L, fixed to stable residue Operations: 9 hrs/d, 5 d/wk Flow rate: 2,000 gpm (4,000 m³/d) Se discharge limit: 0.005 mg/L

IX Column Residence Time: 6 mins ERC Power: 100 kW Residue: Max ~ 900 lbs/d filter cake

3D Model of First US-based Selen-IX[™] plant

Copper Mine Selen-IX[™] WTP – Western USA

Project Drivers

Design Parameters

Remove selenate to less than 1.6 part per billion, along with upstream metals removal for Cd, Cr, Cu, Zn, As Flow rate: 2,000 gpm (4,000 m³/d) Se discharge limit: 0.0016 mg/L

IX Column Residence Time: 3 mins ERC Power: 200 kW Residue: Max ~ 3 t/d filter cake

NF/RO + ERC for Selenium and Sulphate Removal

- Produce treated water with Se & SO₄²⁻ complying with discharge limits
- Pre-concentrate Se & create
 CaSO₄·2H₂O supersaturation

- Remove SO₄²⁻ by relieving CaSO₄·2H₂O supersaturation
- Produce clean gypsum

- Remove Se from pre-concentrated solution to eliminate brine from membranes
- Stabilize Se into non-toxic inorganic residue suitable for re-use

NF/ERC WTP Under Construction – Western USA

NF/ERC WTP Under Construction – Western USA

Possible Application for Lake Koocanusa to Meet 0.8 µg/L Selenium Standard

Cross-Boundary Quandary: Dual Selenium Standard

Lake Koocanusa (Libby Reservoir)

- Lake Koocanusa shared by Canada and USA
- BC WQG for selenium is 2 μg/L
- Montana has set 0.8 µg/L sitespecific selenium standard in Lake Koocanusa
- Current average selenium concentration is ~1 μg/L

Picture from AP News: https://apnews.com/article/mt-state-wire-id-state-wire-montana-canada-lifestyle-9d39d3999c64478297b4c474d61f8d3f

Lake Koocanusa (Libby Reservoir)

- Kootenay, Bull, and Elk Rivers flow into Lake Koocanusa
- Elk River: ~1/4 of flow into Lake Koocanusa
- >95% of selenium
 loading from Elk River

Map adapted from Montana DEQ's "Derivation of a Site-Specific Water Column Selenium Standard for Lake Koocanusa" (2020)

Elk River Selenium Concentrations and Flows

Data from https://aquatic.pyr.ec.gc.ca

Selenium Filtration Plant to Reduce Selenium Load to Lake Koocanusa

- Raw water quality:
 - [Se] ~10 μg/L avg
 - [SO₄²⁻] ~75 mg/L avg
- Design flowrate 7 m³/s (605,000 m³/d) removes ~1/3 selenium loading
- Concrete basins
- Can help reach compliance with U.S. 0.8 µg/L selenium standard

Potential Solution to Cross-Boundary Conundrum

- Technology exists to solve problem
- Non-biological selenium treatment of portion of Elk River (~2-3% of total inflow to Lake Koocanusa)
- Remove ~1/3 of selenium loading into Lake Koocanusa
- Could yield results within < 1 year of commencement
- Solids generated per year would be ~0.01 to 0.04% weight of annual coal production in area

Reach end-of-pipe selenium concentration < 0.5 μg/L

Avoid organoselenium issues & chronic effects

Avoid bio treatment issues: nutrient add, COD/BOD, TSS

Handle large fluctuations in flow and mass loading and temperature

Provide seasonal or intermittent treatment

H.C. Liang Manager, Water Studies hliang@bqewater.com Brent Baker Director, Engineering bbaker@bqewater.com David Kratochvil President & CEO dkratochvil@bqewater.com