Forensic Geochemistry Chasing the Last 1% of Copper Loadings Downstream of a Legacy Site

D. Skruch and S. Barabash 8 Dec 2021

Presentatio n Outline

- Introduction / Background
- Context and Study Objectives
- Study Design
- Lines of Evidence
- Conceptual Loadings Model
- Results Summary
- Outcomes

Outline

- Operations in the mid 1950's, via open pit and U/G
- Mountain terrain, rapid spring freshet
- Two main creeks, downstream of the former open pit and waste rock piles

Intoduction

Site Overview

- Numerous remedial actions have been completed in the North Creek drainage system
- Remediation Efforts 1995 1999
 - The 7000 Dam, 6930 Adit, Upper Pump Station, Waste Rock Removal, Diversion & Collection Ditches
 - Removal of debris flow material that contained elevated copper contents along North Creek

Introduction

Site Overview

ntroduction

Remediation Efforts – 2003 - 2006

- Collection and treatment of North Creek Seeps, including a cutoff wall above the Upper Pump Station, seep collection systems, pumping wells, expansion of the Upper Pump Station, construction of the Lower Pump Station.
- North Creek Pipeline to Bypass South Creek Deferred to evaluate natural recovery following the source controls listed above
- Natural Recovery of Stream Sediments

Ongoing Performance Monitoring

- Following the implementation of the earlier remediation efforts, a decline in loadings along the North Creek drainage was observed, with further reductions observed following additional efforts, as completed in 2006.
- An overall reduction of over 99% of the copper loadings at the mouth of North Creek was estimated over the period 1996 through 2014.

rtoducion

Water Quality in North Creek Current vs. Historical

Introduction

Study Objectives

troduction

- Evaluate potential sources of copper loadings in the North and South Creeks, including a quantitative measure of the forms of copper present.
- Identify potential actionable sources vs. diffuse sources
 - Actionable point sources able to be acted upon (e.g. hotspots or specific seepage sources that could be acted upon and provide a material reduction in loading)
 - Diffuse sources dispersed source area (e.g. along substantial portions of the drainage system)
- Provide information to support management strategies, including potential remedial strategies for sources that may be actionable.

Field Investigation Plan Fall 2019 / Spring 2020

Field Investigation Plan

	Potential Loadings Pathway	Proposed Sampling Approach	Estimated Stations (Min) ¹
	Surface Water	Synoptic Sampling	Up to 10 - 15 Stations (includes routine stations)
	In-Stream and Wetted Perimeter Sediments	Vertical Profile Samples Grab Samples	Up to 4 Areas 2-3 Samples per Area
		Porewater	Up to 4 Areas 2-3 Samples per Area
		Selective Extraction	
	Shallow Groundwater	Drive Point Piezometer Shallow Groundwater Sampling	Up to 2-3 Transects 2 Nests per Transect
		Vertical Profile Samples Laboratory Leachate and Selective Extraction	Up to 2-3 Transects Up to 2-3 samples per Transect
	Overbank Deposits	XRF Measurements Core Samples Laboratory Leachate and Selective Extraction	Up to 22 Stations Up to 2 Depths per Station

Ecometrix Environmental

Groundwater

2019 O Historical

Evaluating Lines of Evidence

Point Sources or Diffuse Loadings?

Ecometrix Environmental

HUPOTRESIS

Overview of Study Outcomes

Environmental

Ecometrix

JICOMES

- Copper loadings in South Creek have naturally recovered over time
- Majority of copper loadings associated with South Creek, with minor amounts in North Creek
- Pipeline to re-route North Creek therefore not a clear solution to loadings removal in South Creek
- Copper inventory remains in the solids and appears to be dispersed across the nearby South Creek overbank materials
- No apparent actionable (point) sources were observed
- Preliminary recovery estimates in South Creek on the order of decades
- Large-scale efforts would be required to remove and dispose of the affected soils and would adversely affect the existing creek system

Lines of Evidence Relative Loadings Contributions

North Creek

Synoptic Sampling

Lines of Evidence Solids – Porewater - Groundwater Interaction

Solids Samples

Solids Content - Copper

solids

Legend XRF < 100 mg/kg
100 to 1000 mg/kg
1000 to 2500 mg/kg
2500 to 10000 mg/kg
> 10000 mg/kg

Porewater Samples

Solids - Porewater Interactions

Ecometrix Environmental

POTEWATET

Shallow Subsurface Water Samples

South Creek – Cross Section

Copper Concentrations in the Porewater and Shallow Subsurface

- Elevated in shallow porewater
- Not elevated in deeper groundwater

Conceptual Model Hypotheses

- NOTE Inventory of copper available in the solids
 - In the 1990s tonnes of copper exiting NC each year
 - SC is currently the dominant loading source
 - Approximately 30-35kg/year over past decade
 - Release rate is relatively consistent with distance
 - Conditions in channel not conducive to loadings
 - Rocky bottom, rapid flow

Environmental

Ecometrix

- Porewater concentrations correlated with solids contents
- Loadings are correlated with flow increases
- Groundwater does not appear to be a substantial contributor

Copper Content (mg/kg)

SC (2015-2020)

Conceptual Model Hypothesis

A NOLE

Higher flow periods – Groundwater Ridging

- Only occurs during wet / high flow conditions
- Consequence of an elevated water table

- Lower flow periods Direct Infiltration
 - Highly soluble copper
 - Slow and persistent loadings from a dispersed surface load

Loading estimates from each conceptual model is greatly dependent on estimated extents of copper-loaded soils and proportion of SC overbank susceptible to groundwater ridging

Depths, reaches, width, solids content

Ecometrix Environmental

ON NODE

Copper Loadings GW Ridging & Infiltration Loading Rates

Environmental

Ecometrix

Spring high-flow conditions (SC loads of 1 to 1.5 mg/s):

- Higher concentration zones may account for 20-30% of loads
 - Upper range estimates include assumptions that additional, as-yet undiscovered, high concentration zones exist
- Majority of loads expected to be controlled by the more diffuse lower concentration regions

Fall low-flow conditions (SC loads of ~ 0.2 mg/s):

- High concentration zones may account for 15-30% of loads
 - Upper ranges includes assumption that additional high concentration zones exist
- Majority of loads also controlled by the more prevalent lower concentration regions
- Depth, reaches, width and representative copper contents remain a critical input

Copper Loadings Depletion Rates

Key factors include:

- Length of stretch, width of bank, depth, representative Cu contents. rate of copper release over time
- Estimates to reach target concentration by source depletion vary substantially based on model assumptions
- Approx. 70 years to reach target concentration of 0.0063 mg/L starting at a representative Cu-content of 440 mg/kg (half of average measured value)
 - Secondary estimate of 90 years to reach target concentration starting at a representative Cu-content of 960 mg/kg (median measured value)

Copper Loadings North Creek Summary

Environmental

ISCUSION

Ecometrix

- Main source of loadings not associated with North Creek
- Does not seem to originate from the creek channel itself
- Does not seem to originate from a surficial point source
- Creek is deeply incised with limited banks and varied copper contents that suggests actionable sources not easily removed
- Adding a pipeline to convey loadings from North Creek would not substantially reduce the loadings in South Creek

Copper Loadings South Creek Summary

5CUSION

- Loadings along SC increase consistently downgradient
 - Evidence to date suggests diffuse sources of copper, rather than actionable (or single) point-sources
- However there is an inventory of copper available within the solids (estimated at several tonnes)
 - Early 1990s tonnes of Cu exiting NC per year
 - Testing suggests these solids are relatively easily mobilized and they will continue to load into SC
 - Current release rates of approximately 30 kg/year

Copper Loadings South Creek Summary

Environmental INTELLIGENCE

Ecometrix

SCUSJON

- Copper inventory remains in the solids and appears to be dispersed across the nearby SC banks
 - No apparent actionable (point) sources
 - Preliminary estimates of natural recovery timetables on the order of decades

- Low solids contents (mid-100s mg/kg) necessary to meet water quality criterion
- Large-scale efforts would be required to remove and dispose of affected soils – such efforts would adversely affect the existing creek ecosystem

Thank you!

dskruch@ecometrix.ca sbarabash@ecometrix.ca