# BARRICK



NYSE : GOLD TSX : ABX

#### World class mines. World class people.

#### BARRICK

#### Post Closure Cover Performance Evaluation and Improvement at Rain Mine in Nevada

Johnny Zhan, Ph.D., Barrick Gold Alan Jones, Nevada Gold Mines Peter Yuan, Ph.D., WSP

Date: November 30, 2022



#### **Outlines**

- 1. Project Background
- 2. Meteoric Conditions
- 3. ET Cover
- 4. Seepage Model
- 5. Performance Evaluation
- 6. Synthetic Cover
- 7. Conclusions

#### 1. Project Background: Facility

- Located in Elko County, Nevada at an elevation of 6,600 feet ft amsl
- From 1988-2002, approximately 70 million tons of waste rock from pits and underground facilities placed with a footprint of 180 acres
- Seepage collected by underdrain systems and managed at the mine (zero discharge)
- In 2002, reclamation completed with construction of a 4-ft Evapotranspiration (ET) cover





#### 1. Project Background: Seepage





| <b>GRAPH STATISTICS</b> |       |  |  |  |  |
|-------------------------|-------|--|--|--|--|
| (gpm)                   | (gpm) |  |  |  |  |
| Average                 | 30    |  |  |  |  |
| Median                  | 19    |  |  |  |  |
| Max                     | 301   |  |  |  |  |
| Min                     | 2     |  |  |  |  |
| Range                   | 301   |  |  |  |  |
| STDEV                   | 35    |  |  |  |  |
|                         |       |  |  |  |  |

#### 2. Meteoric Conditions: Precip. Undercut **BARRICK**

Site recorded precipitation (12 in/yr) is underreported



Yang et al. (1998)

|              | Wind Speed (m/s) | Unshielded (%) |                           | Alter-Shielded (%) |                             |
|--------------|------------------|----------------|---------------------------|--------------------|-----------------------------|
|              |                  |                |                           |                    |                             |
| Snow         | 3                | 53             | =EXP(4.606-0.157*Ws^1.28) | 78                 | =EXP(4.606-0.036*\$Ws^1.75) |
|              |                  |                |                           |                    |                             |
| Mixed Precip | 3                | 76             | =100.77-8.34*Ws           | 84                 | =101.04-5.62*Ws             |
|              |                  |                |                           |                    |                             |
| Rain         | 3                | 89             | =EXP(4.605-0.062*Ws^0.58) | 92                 | =EXP(4.606-0.041*Ws^0.69)   |

#### 2. Precipitation Pattern in Northeast NV **BARRICK**



When elevation is at or below 5,500 ft amsl: P (in/yr) = 0.0019 E (ft) + 0.41
When elevation is above 5,500 ft amsl: P (in/yr) = 0.0082 E (ft) – 34.55

#### 2. Corrected Precip. (Climate Engine)

**Rain Mine Water Year Precipitation** 30.0 Annual WY precipitation: 11-25 in/yr Average WY precipitation: 17 in/yr 25.0 **Precipitation**, Inches 20.0 15.0 10.0 5.0 0.0 1989 1990 1996 1999 2001 2009 2010 2011 2013 2013 2013 2015 2015 2004 2019 2022 

BARRICK

Water Year

#### 2. Average Climate Conditions



#### 3. ET Cover: Concept





#### 3. Required Cover Water Storage

|               | Precip | PET     | Snow/Frozen | Season            | P/PET | Threshold | Threshold | Beta                | Lambda      | ⊿s    |
|---------------|--------|---------|-------------|-------------------|-------|-----------|-----------|---------------------|-------------|-------|
|               |        |         |             |                   |       |           |           |                     |             |       |
| Month         | (mm)   | (mm)    | Ground?     |                   |       | (P/PET)   | Exceeded? | β(-)                | ∧ (mm)      | (mm)  |
| Jan           | 54.3   | 25.0    | Y           | Fall/Winter       | 2.17  | 0.51      | Y         | 0.37                | 0           | 45.0  |
| Feb           | 40.7   | 34.6    | Y           | Fall/Winter       | 1.18  | 0.51      | Y         | 0.37                | 0           | 27.9  |
| Mar           | 44.8   | 63.9    | Y           | Fall/Winter       | 0.70  | 0.51      | Y         | 0.37                | 0           | 21.2  |
| Apr           | 45.2   | 93.4    | N           | Spring/Su<br>mmer | 0.48  | 0.97      | N         | 1.00                | 167.8       | 0.0   |
| May           | 54.2   | 133.8   | Ν           | Spring/Su<br>mmer | 0.41  | 0.97      | N         | 1.00                | 167.8       | 0.0   |
| Jun           | 27.7   | 171.2   | N           | Spring/Su<br>mmer | 0.16  | 0.97      | N         | 1.00                | 167.8       | 0.0   |
| Jul           | 10.4   | 206.2   | N           | Spring/Su<br>mmer | 0.05  | 0.97      | N         | 1.00                | 167.8       | 0.0   |
| Aug           | 14.9   | 182.6   | N           | Spring/Su<br>mmer | 0.08  | 0.97      | N         | 1.00                | 167.8       | 0.0   |
| Sep           | 28.4   | 125.6   | Ν           | Spring/Su<br>mmer | 0.23  | 0.97      | N         | 1.00                | 167.8       | 0.0   |
| Oct           | 26.7   | 76.2    | Ν           | Fall/Winter       | 0.35  | 0.34      | Y         | 0.30                | 27.1        | 0.0   |
| Nov           | 45.9   | 36.6    | Y           | Fall/Winter       | 1.25  | 0.51      | Y         | 0.37                | 0           | 32.3  |
| Dec           | 48.6   | 23.3    | Y           | Fall/Winter       | 2.08  | 0.51      | Y         | 0.37                | 0           | 40.0  |
|               |        |         |             |                   |       |           |           |                     |             |       |
| Total<br>(mm) | 441.8  | 1,172.2 |             |                   |       |           |           | Total Re<br>Storage | quired<br>= | 166.5 |

#### BARRICK

Water Balance Covers for Waste Containment Principles and Practice



William H. Albright, Ph.D. Craig H. Benson, Ph.D., P.E. W. Joseph Waugh, Ph.D.



#### 3. Available Water Capacity (AWS)



- Field capacity (θc): Normally assumed to be the water content corresponding to a suction of 1/3 bar (33 kPa)
- The minimum water content (θm), or wilting point, is normally assumed to correspond to a suction of 15 bar (1,500 kPa)
- In the desert plant communities, wilting point to correspond to a much higher suction, i.e., 4,000 kPa, to account for their higher salt tolerance
- The AWC:

$$AWC = \theta c - \theta m$$

#### 3. Measured AWC ( $\theta c - \theta m$ )

|         |          |                      |                      | Available WC (θ <sub>c</sub> |  |
|---------|----------|----------------------|----------------------|------------------------------|--|
| Station | Material | FC (θ <sub>c</sub> ) | WΡ (θ <sub>m</sub> ) | -θ <sub>m</sub> )            |  |
| RMMS-1  | Topsoil  | 20%                  | 12%                  | 8%                           |  |
| RMMS-1  | Cover    | 18%                  | 13%                  | 5%                           |  |
| RMMS-2  | Topsoil  | 23%                  | 13%                  | 10%                          |  |
| RMMS-2  | Cover    | 22%                  | 14%                  | 8%                           |  |
| RMMS-3  | Topsoil  | 25%                  | 14%                  | 11%                          |  |
| RMMS-3  | Cover    | 22%                  | 14%                  | 8%                           |  |
| RMMS-4  | Topsoil  | 19%                  | 11%                  | 8%                           |  |
| RMMS-4  | Cover    | 23%                  | 15%                  | 8%                           |  |
| RMMS-5  | Topsoil  | 20%                  | 11%                  | 9%                           |  |
| RMMS-5  | Cover    | 20%                  | 13%                  | 7%                           |  |
| RMMS-6  | Topsoil  | 20%                  | 12%                  | 8%                           |  |
| RMMS-6  | Cover    | 19%                  | 13%                  | 6%                           |  |
| RMMS-6  | Cover    | 22%                  | 16%                  | 6%                           |  |
| RMMS-7  | Topsoil  | 20%                  | 12%                  | 8%                           |  |
| RMMS-7  | Cover    | 30%                  | 19%                  | 11%                          |  |
| RMMS-8  | Topsoil  | 20%                  | 12%                  | 8%                           |  |
| RMMS-8  | Cover    | 25%                  | 17%                  | 8%                           |  |
| RMMS-9  | Topsoil  | 20%                  | 12%                  | 8%                           |  |
| RMMS-9  | Cover    | 22%                  | 14%                  | 8%                           |  |
| Average |          | 22%                  | 14%                  | 8%                           |  |



#### 3.Measured AWC ( $\theta c - \theta m$ )

| Material           | Thickness<br>(ft) | FC<br>(θ <sub>c</sub> ) | WΡ<br>(θ <sub>m</sub> ) | AWC<br>$(\theta_c - \theta_m)$ |
|--------------------|-------------------|-------------------------|-------------------------|--------------------------------|
|                    | 1                 | 20.8%                   | 12.1%                   | 8.7%                           |
| Topsoil            |                   |                         |                         |                                |
|                    | 3                 | 22.3%                   | 14.8%                   | 7.5%                           |
| Cover              |                   |                         |                         |                                |
|                    | 4                 | 21.9%                   | 14.1%                   | 7.8%                           |
| Thickness Weighted |                   |                         |                         |                                |

- AWC is bout 8% based on wilting point at 15 bar. 10% is the most likely value if wilting point would be determined at 40 bar
- The total required storage is 166.5 mm (6.6 in), and actual storage of the 4 ft cover is 121.9 mm < 166.5 mm with a storage deficit of 44.6 mm (1.8 in)</p>
- The required optimum cover thickness would be about 5.5 ft, instead of the 4 ft

#### 4. Seepage Model (GR2M, Mouelhi 2003)BARRICK





#### 5. Performance Evaluation (M-E Method) **BARRICK**



- Cover performance became dynamically stable around year 2011 after vegetation became mature
- Average annual precipitation (2011-2019) is 20 in/yr, percolation is 2.4 in/yr
- Seepage rate is about 12% of precipitation
- It is lower than the expected groundwater recharge of 15% from Maxey-Eakin method

#### 5. Performance Evaluation (Benson et al.) **BARRICK**



Annual P/PET

#### 6. Synthetic Cover: Wind Rose

Typical Wind Rose in 4<sup>th</sup> Quarter **N** Rain Mine



BARRICK

Snow accumulation on northeast facing slope because snow drifting

#### 6. Synthetic Cover: Snow Surveys



- SMI (March 2001): Average snow depth 16.5 in (4.9 in SWE) with greatest snow accumulation found on northeast facing slope 59 in (26 in SWE)
- ASW (2009): No details. 2-3 ft of snow depth on the northing face and 0.01-2 ft on the south facing slopes and flat area
- AMEC (Jan, Feb, Mar, Apr 2010): The most detailed study. 5 transects with 10 locations along each transect. Greatest snow accumulation found on northeast facing slope

#### 6. Synthetic Cover



- ~80 acres covered, representing a 43% of total facility footage
- New cover consisting of
  - □ Liner bedding
  - □ Plastic liner and geotextile (Super Gripnet<sup>®</sup>)
  - □ 2 ft Overliner Soil
  - 1 ft Topsoil





#### 6. Sequence 1 - Removing & Stockpiling Existing ET Cover





### 6. Sequence 2 - Re-contour Slope & Construct Drainage Benches







#### 6. Sequence 3 - Liner Bedding Preparation **BARRICK**









#### 6. Sequence 4 - HDPE & Geotextile Deployment







## 6. Sequence 5 - Placement of Soil Cover Over Geosynthetics



#### 6. Drainage Channels



#### 6. During Construction (June 30, 2022) **BARRICK**



#### 6. Post Construction (October 2022)



#### 6. Initial Results: Only South Part Covered with the Synthetic Cover



|            | HYDROGRAPH  | (DISCHARGE CHECK) | OBS   | UNIT: gpm         |
|------------|-------------|-------------------|-------|-------------------|
|            |             |                   |       | 30                |
| Oct<br>100 | t-19 Oct-20 | Oct-21            | Oct-2 | 22<br>25 <u>-</u> |
| 90<br>80   |             |                   |       | 20                |
| 70<br>60   |             |                   |       | 15                |
| 50<br>40   |             |                   |       | 10                |
| 30<br>20   |             |                   |       | 5                 |
| 10<br>0    |             | /                 |       |                   |

#### 7. Conclusions

- Annual precipitation at Rain is estimated at 17 in/yr
- Monthly seepage ranges from 10 gpm to 120 gpm. Peak monthly flows occur in April. The lowest monthly flows (baseflow) occur in February before snowmelt
- The seepage is reasonably modeled using the hydrological model
- Percolation through the ET cover is about 12% of precipitation, compared favorably with benchmarks
- Cover design driven by snowmelt hydrology difficult to manage the water due to rapid infiltration
- Difficult to achieve very low percolation rates with earthen covers, therefore very low percolation rates require geosynthetics
- Because most seepage originates in the northeast slope face, the cover improvement focused on this area
- The enhanced synthetic cover costed ~ US\$18M for ~ 80 acres, and initial results are encouraging
- It is expected that new cover could reduce percolation rate to ~ 10 gpm level, potentially suitable for passive treatment