Cluff Lake Project Decommissioning Process and Lessons Learned

Kebbi Hughes and Tina Searcy December 2023

Project Site and Decommissioning Overview

Orano Canada

- A **leader** in uranium exploration & processing
- Over **55** years in northern Saskatchewan; including exploration, mining & milling and successful decommissioning of a modern uranium mine, mill & tailings management facility
- 420 employees
- Corporate Office located in Saskatoon Saskatchewan

Decommissioned Cluff Lake Project

- located on Treaty 8 Territory and within the Homeland of the Métis
- site is remote, with unrestricted access
- primary, potential future users of the site are resource development and traditional land users
- discovered in mid '60's

orano

- operated from 1980 2002
- majority of decommissioning occurred 2004 2006
- 2019 acknowledgement that decommissioning objectives had been achieved

Temporary Use of the Land

Institutional Control (>2023) | Pre-Development (<1980) Long-Term Monitoring | Baseline Monitoring Unrestricted Access & Land Use

Post-Decommissioning Monitoring (2006-2022+) Achievement of Objectives and Criteria/ Risk Assessment

2013 – Unrestricted Access

orana

Construction and Operations (1980-2002) Progressive Decommissioning, Risk Assessment, and Monitoring Restricted Access (~4,200 hectares)

Physical Decommissioning (2004-2006) Objectives and Criteria for Success – Safe Land Use Reduced Restricted Access (~1600 hectares in 2004)

Detailed Decommissioning Planning (1998-2004) Environmental Assessment – Future Land Uses Restricted Access (~4,200 hectares)

Status

Decommissioning Objectives

- 1. Environment is safe for use
- 2. Landscape is chemically and physically stable
- 3. Landscape is stable and self sustaining, allowing for traditional land use
- 4. Constraints on future land use are minimized
- 5. No unreasonable risk to humans or the environment

Site is available and safe for traditional land use.

The surface lease area has been reduced by over 4000 ha.

orano

Decommissioning Details and Lessons Learned

Claude Mining Area

- Pit was backfilled with waste rock and demolition debris, covered, planted with trees
- Waste rock pile was shaped, compacted, covered with a 'moisture store-and-release' till layer, and seeded
- Vegetation is self-sustaining, pile is stable, and successfully minimizing net percolation rates
- Achieving surface water quality in Claude Lake now and in the long-term

- Contaminant transport was modelled every 5 years incorporating new data
- The results feed into environmental risk assessments
- Understanding change over time gave a good understanding of site stability and key areas of risk

10

Claude Area Re-Vegetation: Public Perception

D Mining Area

- First deposit mined
- Decommissioned as pit lake, flooded in 1983
- Stable chemocline, surface water quality objectives achieved in the long-term

Establishment of Stable Chemoclines

D-Pit limnological profiles demonstrate a stable chemocline over 14 years

Water with higher concentrations of contaminants is sequestered at the bottom of the pit, never interacting with the surface water

Tailings Management Area (TMA)

- Low permeability tailings consolidated to remove pore water
- Till 'moisture store-and-release' cover placed, graded, and seeded
- Vegetation is self-sustaining, storm water management achieved under passive care, design successfully minimizing net percolation rates
- Achieving surface water quality in Snake Lake now and in the long-term

The Future

How Do We Measure Decommissioning Success?

- Physical stability and erosion control including revegetation success
- Water and sediment quality in surface water bodies
- Contaminant transport modelling
- Ecological and Human Health Risk Assessment
- Radiological clearance

Ecological & Human Health Risk Safe now & for the future

Ecological Risk Assessment confirms Environmental Assessment conclusions:

- that the effects of decommissioning are largely positive and the potential adverse effects are not significant
- potential adverse effects are moderate, localized, temporary, with recovery occurring over several generations
- no downstream impacts

Human Health Risk Assessment confirms:

- radiation doses will remain well below the CNSC dose limit of 1 mSv/year for members of the public
- continued safe use of the area for traditional land use, e.g. safe for hunting/harvesting, fishing, gathering, etc.

Long-term Monitoring & Maintenance Plan

Monitoring measures COPCs in the environment to:

- Confirm level of risk and ERA predictions
- Demonstrate compliance with surface water objectives

Surface Water Monitoring

- Verifies the effectiveness of the decommissioning in controlling contaminant transfer to the receiving environment
- utilized to determine if risks to VECs remain within predictions

Geotechnical Inspections

- Ensure site is physically safe
- Monitor for low likelihood accidents and malfunctions
- Monitor for indications of site use

Institutional Control Program

Transfer to Provincial Institutional Control Program

- Established by legislation
- Allows for the transfer of a decommissioned site, or portions of, back to the Province (as land owner)
- Ensures that the government has adequate funds
 - Long-term monitoring and maintenance
 - Worse case failure event
 - Unforeseen event
- Sites are *not* abandoned

Thank you!

Cluff Lake Then & Now on YouTube

Cluff Lake Then and Now (2023) - YouTube

