Blast Fractionation of Sulfides and Carbonates -Implications for Operational Classification of Mine Rock

BC MEND ML/ARD Annual Workshop Jared Robertson (Okane Consultants) Garnet Cornell (New Gold Inc.) December 7, 2023

Land Acknowledgment

 We would like to start off by taking this opportunity to acknowledge that the land on which this project was conducted is Treaty 3 territory, the traditional lands of the Anishinaabe Nations and home to Métis communities

2

Outline

- Rainy River (New Gold Inc.) mine site overview
- Blast fractionation study objectives and field program
- Analysis of sulfide and carbonate fractionation
- Implications and opportunities for geochemical classification criteria

3

Rainy River Gold Mine

- Gold mine 65 km NW of Fort Frances, Ontario
- Milling throughput of ~23,500 tonnes/day
- Series of volcanic, sedimentary, and intrusive rock successions
 - Major lithologies: dacite, intermediate felsic, mafic, and diabase dike
- PAG mine rock is segregated and placed in the East Mine Rock Stockpile (EMRS)
- NAG mine rock used for construction fill or placed in the West Mine Rock Stockpile (WMRS)

Mine Rock Segregation

- Blast hole samples are measured for Total Sulfur and Total Carbon at the on-site LECO laboratory
- Neutralization potential (NP) and acid potential (AP) are calculated based on empirical correlations to calculate the neutralization potential ratio (NPR)
- Rainy River mine rock classification criteria:
 - PAG Mine Rock: NPR = $\frac{NP}{AP} < 2$
 - PAG Mine Rock Sub-Classifications

PAG1: NP < 12.5 kg CaCO₃/tonne PAG2: NP < 19 kg CaCO₃/tonne PAG3: NP > 19 kg CaCO₃/tonne

• NAG Mine Rock: NPR ≥ 2

Geochemical Blast Fractionation

Blast Fractionation Study

- Geochemical classification is based on whole, unblasted rock
- Do sulfides and carbonates partition to different size fractions in blasted rock?
- Is the "effective" NPR of blasted rock different from the whole rock NPR?
- Because the fines in the blasted rock are the most reactive:
 - If sulfides fractionate to the fines, NAG rock may behave as PAG rock
 - If carbonates fractionate to the fines, PAG rock could be used as NAG rock
- Objective: Evaluate the potential for sulfides or carbonates to partition to finer fractions in blasted mine rock

Sampling Plan

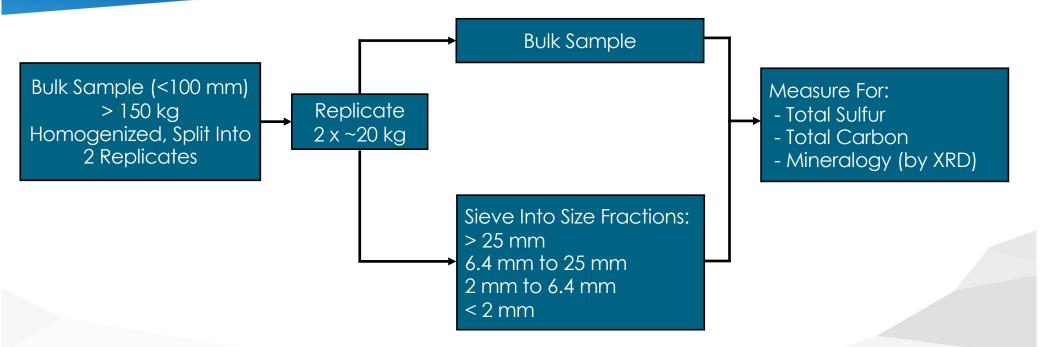
Rock Type	Classification	Samples Targeted	Samples Collected
Dacite	PAG1	1	1
	PAG2/3	3	3
Intermediate	PAG2/3	2	2
	NAG	2	2
Mafic	PAG2/3	2	1
	NAG	2	1
Diabase	NAG	2	2
Total		14	12

- Sampling program targeted all major lithologies, PAG, and NAG rock
- Approximately 100 to 200 kg of freshly blasted mine rock collected directly from the open pit
- Total carbon, total sulfur, and mineralogy completed on bulk sample and individual size fractions in duplicate

Field Sampling

 Identified freshly blasted mine blocks of the desired lithology and PAG/NAG classification

 Loader sampled blasted rock from active face and placed blasted mine rock on tarp to minimize contamination


Field Sampling

- Removed rocks > 100 mm by hand
- Sampled rock into pails with shovels
 - Attempted to get an EVEN PSD instead of a REPRESENTATIVE PSD
 - Ensured enough of each size fraction available for laboratory testing

Laboratory Handling

- Pails of each sample homogenized, split in two replicates
- One replicate used as the bulk sample, other replicate sieved into four size fractions
- Geochemical analysis conducted on bulk sample and each size fraction

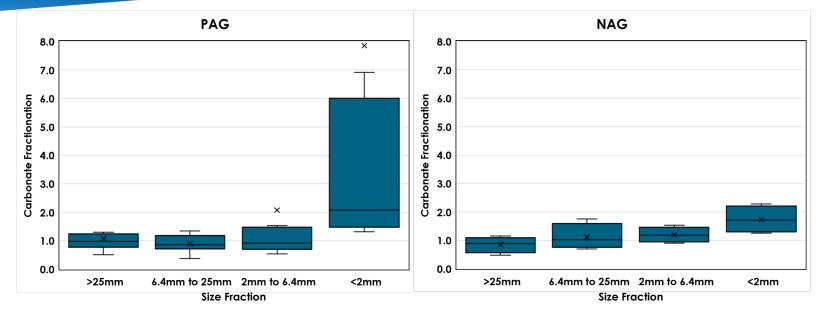
Geochemical Blast Fractionation

Blast Fractionation Study Results

- For the purposes of this study, fractionation is defined as the ratio of a parameter in a specific size fraction to the bulk sample
- For example:

NP Fractionation to < 2 mm Size Fraction =

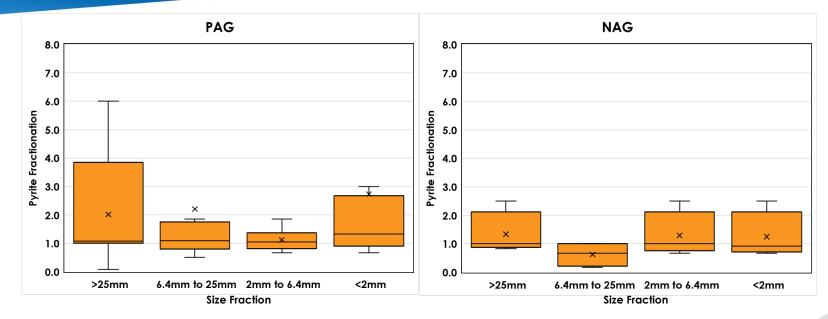
NP in < 2 mm Size Fraction


NP in Bulk Sample

- Fractionation > 1 suggests there is more NP in the < 2 mm size fraction
- Fractionation < 1 suggests there is less NP in the < 2 mm size fraction

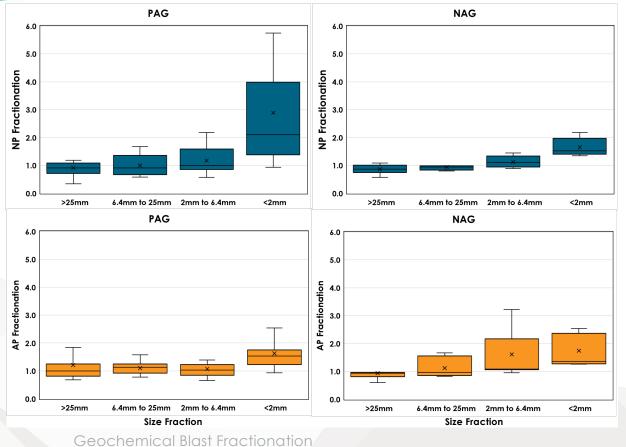
11

Mineral Fractionation – Carbonates



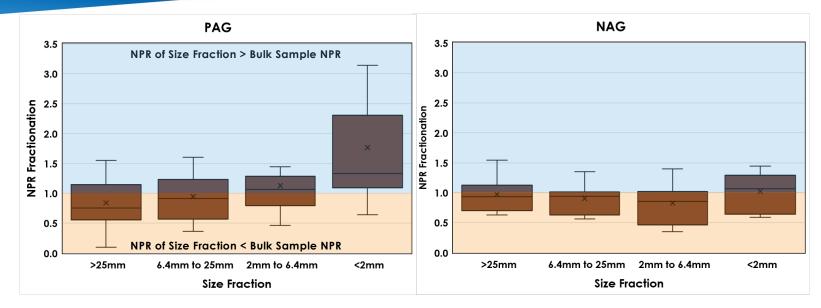
- Calcite is the dominant carbonate mineral in all rock types, with moderate amounts of dolomite
- 0.9 to 5 wt.% calcite + dolomite in PAG samples
- Carbonate fractionation is greatest in PAG samples, but appears to occur in NAG samples as well
- Fractionation is most evident in the -2 mm fraction

Mineral Fractionation – Pyrite



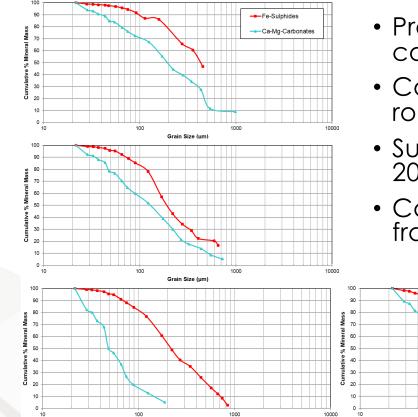
- Pyrite is the dominant sulfide mineral in all rock types
- 0.2 to 2 wt.% pyrite in PAG samples
- Pyrite fractionation is greater in PAG samples, and no clear trend by size fraction

13

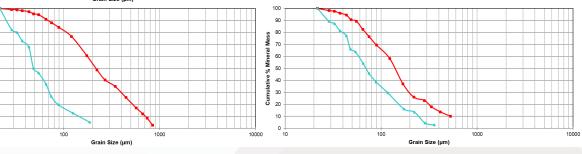

NP and AP Fractionation

- Total sulfur and carbon used to calculate AP and NP
- AP and NP results generally consistent with mineralogy
- Greatest fractionation occurs with NP in PAG rock
 - Higher NP in the -2 mm fraction
- AP and NP fractionate in similar amounts in NAG rock

NPR Fractionation



- The median NPR of the finest fraction (< 2 mm) in the PAG samples is ~1.3x the NPR of the bulk sample
- Coarser fractions are more acid generating in PAG samples, but less reactive
- Fractionation in NAG rock is more uniform across particle sizes



15

Mineral Grain Size

- Previous QEMSCAN analysis pyrite grains consistently larger than carbonate grains
- Carbonates generally disseminated through rock matrix (Pelletier, 2016)
- Sulfides generally present in veins (Pelletier, 2016)
- Consistent with observation of more NP in finer fractions

Geochemical Implications

- The < 2 mm size fractions represents the most reactive material (MEND, 2009)
- More NP is available in the blasted finer fractions of PAG material than what is measured in bulk material
- There is functionally more NAG rock if the fractionation of NP to more reactive size fractions is accounted for
- Opportunity to update the classification criteria based on mineral fractionation

17

PAG/NAG Classification Re-Evaluation

	PAG Samples
NP Fractionation Median	2.10
AP Fractionation Median	1.53
NPR Fractionation Factor	1.37

Median NP Fractionation (< 2 mm)

NPR Fractionation Factor =

Median AP Fractionation (< 2 mm)

Adjusted NPR = NPR × (NPR Fractionation Factor) = NPR × 1.37

 Applying the NPR fractionation factor to mine rock produced since 2021, 9% of PAG mine rock would be reclassified as NAG

18

Conclusions

- Blast fractionation of carbonates and sulfides occurs in Rainy River mine rock
 - Carbonates partition to the finer fractions more than sulfides
- Based on the relative amount of NP in the finer-fractions vs. AP, the current NPR calculation could be updated to account for this fractionation
- Takeaways for other mines:
 - Once a mine is operational, consider the potential for mineral fractionation as part of ARD monitoring programs
 - Evaluate the implications for ARD risk and PAG/NAG classification criteria that were developed prior before mining began

19

Acknowledgments and References

Acknowledgments

- Garnet Cornell (Rainy River general support)
- Tim Schwartz (Rainy River geology support)
- Will Csanyi (field support and sampling)
- Rainy River Environment and Geology Team (field support and discussion)
- Brent Kazamel (field sampling)
- Daniel Francis (data analysis)
- Manuel Cossio (data analysis)

References

MEND. 2009. Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials. Report 1.20.1. Prepared by W.A. Price of CANMET.

New Gold Inc. 2022. NI 43-101 Technical Report for the Rainy River Mine, Ontario Canada.

New Gold Inc. 2023. New Gold 2022 Annual Compliance Report.

Okane, 2022. 1003-020-007. Blast Fractionation of Acid and Neutralization Potential in Rainy River Mine Rock.

Pelletier, M. 2016. The Rainy River Gold Deposit, Wabigoon Subprovince, Western Ontario: Style, Geometry, Timing and Structural Controls on Ore Distribution and Grades

Rainy River First Nations. 2023. <u>www.rainyriverfirstnations.com</u>. Accessed December 1, 2023.

20

Contact Us

Okane Consultants <u>www.okc-sk.com</u> <u>info@okc-sk.com</u>

Integrated Mine Closure and Relinquishment Solutions

